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Neuronal ceroid lipofuscinoses (NCLs) are a collective group of inherited 
severe neurodegenerative diseases of childhood. Due to poor knowledge on 
the functions of proteins defective in NCLs, pathomechanisms behind these 
devastating diseases have remained unknown. In this thesis study, NCL was 
studied in terms of the functions and protein interactions of the late endosomal/
lysosomal transmembrane protein CLN3 defective in classic juvenile onset form 
of NCL, juvenile CLN3 disease. CLN3 was found to interact with cell surface-
associated Na+, K+ ATPase, fodrin and GRP78/BiP, and with several proteins 
involved in late endosomal/lysosomal membrane trafficking, namely Hook1, 
Rab7, RILP, dynactin, dynein, kinesin-2, and tubulin. Further analyses on the 
characteristics of identified CLN3-interacting proteins and associated processes 
in CLN3 deficiency suggested that the late endosomal membrane trafficking as 
well as fodrin-mediated events and non-pumping functions of Na+, K+ ATPase 
could be compromised in early stage of the pathogenesis of juvenile CLN3 
disease. This study provides important clues to the disease mechanisms of NCLs 
and possibly other neurodegenerative disorders.
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Abstract 

Kristiina Uusi-Rauva. Molecular Interactions of Neuronal Ceroid Lipofuscinosis 

Protein CLN3. National Institute for Health and Welfare (THL). Research 82/2012. 

169 pages. Helsinki, Finland 2012. 

ISBN 978-952-245-655-7 (printed), ISBN 978-952-245-656-4 (pdf) 

 

Neuronal ceroid lipofuscinoses (NCLs) are a collective group of recessively 

inherited severe neurodegenerative diseases of childhood. NCLs are characterised by 

progressive, selective neuronal death and lysosomal accumulation of autofluorescent 

storage material, ceroid lipofuscin, which lead to variable but progressive 

symptoms, including epileptic seizures, blindness, motor and mental deterioration, 

and premature death. Genetics of NCLs is well described, and several causative 

genes have been identified. However, due to the poor knowledge on the functions of 

the proteins primarily defective in NCLs, the intracellular changes critical to the 

pathogenesis of NCLs are not known. In this thesis study, NCL was studied in terms 

of its classic juvenile onset form, juvenile CLN3 disease, caused by mutations in a 

CLN3 gene. CLN3 encodes primarily late endosome/lysosome-localised 

transmembrane protein linked to a variety of intracellular processes. In order to 

determine the primary function(s) of CLN3, the protein interactions of CLN3 were 

carefully dissected utilising several different interaction analyses. Identified CLN3 

interactions were further studied by analysing the characteristics of CLN3-

interacting proteins and associated processes in Cln3-/- mouse model, patient 

fibroblasts, and mammalian cell lines. 

CLN3 was determined to interact with the cell surface-localised Na+, K+ ATPase 

and its interacting partners, fodrin cytoskeleton and 78 kDa glucose-regulated 

protein/immunoglobulin heavy chain binding protein (GRP78/BiP). The ion-

pumping function of Na+, K+ ATPase was found to be unaffected in Cln3-deficient 

primary cortical neuron cultures, but clear changes were observed in its basal plasma 

membrane association and ouabain-induced endocytosis. Ouabain is a cardiotonic 

steroid that not only inhibits the ion pumping activity of the Na+, K+ ATPase, but 

also regulates its recently discovered activity in intracellular signalling, apoptosis 

and calcium oscillations. Therefore, it was concluded that CLN3 may play an 

important role in the non-pumping functions of Na+, K+ ATPase. Furthermore, 

analyses of fodrin in Cln3-deficient brain sections and patient fibroblasts revealed 

putative structural changes in the fodrin cytoskeleton suggesting that fodrin-

associated events in axonal and synaptic intracellular trafficking, synaptic 

transmission, and neuritogenesis may also be compromised in early stage of the 

pathogenesis of juvenile CLN3 disease. 

The finding that CLN3 also interacts with the microtubule-binding, endocytic 

Hook1 was the first indication that CLN3 may act directly in membrane trafficking 
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processes. Subsequently, CLN3 was found to interact with motor proteins, dynein-

dynactin and kinesin-2-dynactin, most likely through its direct interactions with 

Rab7 GTPase and its effector Rab7-interacting lysosomal protein (RILP). 

Previously, it has been reported that together with oxysterol-binding protein-related 

protein 1L (ORP1L), Rab7 and RILP facilitate the recruitment of dynein-dynactin 

motor protein to late endosomal/lysosomal membranes and thus, enhance the minus 

end-directed movement of late endosomes and lysosomes. Rab7-containing effector 

complex has also been suggested to regulate kinesin-dependent movement of 

organelles, and thus, may link CLN3 to these functions as well. Interestingly, several 

observations indicated that the late endosomal/lysosomal membrane trafficking is 

affected in CLN3 deficiency. First, disease-associated CLN3 mutants were found to 

interact differently with Rab7 and RILP proteins. Second, late endosomes and 

lysosomes in CLN3 mutant-expressing cells were observed to be abnormally 

clustered to the perinuclear area. Third, functional GTP/GDP cycle of Rab7 was 

found to be affected in CLN3 deficiency. Fourth, CLN3-deficient cells exhibited 

delays in the late endosomal transport of endocytosed cargo, and kinesin-dependent 

movement of late endosomes/lysosomes. These results suggested that Rab7-guided 

microtubular motor protein functions in neurons, such as axonal retrograde 

trafficking of neurotrophins, neurite outgrowth and maturation, and transportation of 

neuronal autophagic vesicles could also be dysregulated in juvenile CLN3 disease. 

This thesis work has provided important novel data on the functions of CLN3 

and the primary intracellular defects possibly resulting in CLN3 disease. This study 

also contributes to the determination of the pathogenesis of other NCLs and general 

processes of neurodegeneration. 

 

 

 

Keywords: CLN3, lysosomal storage disease, intracellular membrane trafficking, 

lysosome, neurodegeneration, neuronal ceroid lipofuscinosis, protein function, 

protein interaction 
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Tiivistelmä 

Kristiina Uusi-Rauva. Molecular Interactions of Neuronal Ceroid Lipofuscinosis 
Protein CLN3 [Neuronaalisessa seroidilipofuskinoositaudissa vioittuneen CLN3-
proteiinin molekyylitason vuorovaikutukset]. Terveyden ja Hyvinvoinnin laitos 
(THL). Tutkimus 82/2012. 169 sivua. Helsinki, 2012. 
ISBN 978-952-245-655-7 (painettu), ISBN 978-952-245-656-4 (pdf) 

 

Neuronaaliset seroidilipofuskinoosit eli NCL-taudit ovat peittyvästi periytyviä, 

lapsuusiässä ilmeneviä keskushermostoa rappeuttavia sairauksia. NCL-taudeille on 

tunnusomaista etenevä selektiivinen hermosolujen kuolema ja autofluoresoivan 

materiaalin, seroidilipofuskinoosin, kertyminen lysosomeihin. Tämä johtaa 

epileptisiin kohtauksiin, sokeuteen, psyko-motoriikan heikentymiseen ja 

ennenaikaiseen kuolemaan. NCL-tauteja aiheuttavia geenimuutoksia on löydetty 

useista eri geeneistä mutta on epäselvää, miten kyseisten geenien mutaatiot johtavat 

taudin puhkeamiseen proteiinitasolla. Tämä johtuu ennen kaikkea siitä, että NCL-

tautien alttiusgeenit koodaavat proteiineja, jotka ovat toiminnallisilta 

ominaisuuksiltaan huonosti tunnettuja. Tämä väitöskirjatutkimus käsittelee NCL-

tautien nuoruusiässä ilmenevää, CLN3-geenin mutaatioista johtuvaa alatyyppiä, 

klassista nuoruusiän CLN3-tautia. CLN3-proteiini on kalvoproteiini, joka sijaitsee 

myöhäisissä endosomeissa ja lysosomeissa ja jonka on ehdotettu liittyvän useisiin 

eri solunsisäisiin toimintoihin. Tässä väitöskirjatyössä on tutkittu CLN3:n 

ensisijaista toimintaa selvittämällä sen vuorovaikutuksia muiden proteiinien kanssa. 

Tunnistettuja CLN3:n kanssa vuorovaikuttavia proteiineja analysoitiin edelleen 

Cln3-poistogeenisessä hiirimallissa, potilaiden fibroblastisoluissa sekä 

nisäkässolulinjoissa.  

Tutkimusten perusteella voitiin todeta, että CLN3 vuorovaikuttaa solukalvolla 

sijaitsevan Na+, K+ ATPaasin ja siihen liittyvän GRP78/BiP:n (engl. 78 kDa 

glucose-regulated protein/immunoglobulin heavy chain binding protein) ja 

solukalvotukirankaproteiini fodriinin kanssa. Cln3-poistogeenisten hiirten aivoista 

valmistetuissa hermosoluviljelmissä tehdyt kokeet osoittivat, että vaikka Na+, K+ 

ATPaasin ionipumppausaktiivisuudessa ei ole havaittavissa merkittäviä muutoksia 

Cln3:n puuttumisen seurauksena, kyseisen proteiinin suhteelliset määrät solukalvolla 

sekä sen ouabaiinilla indusoituva endosytoosi ovat kuitenkin häiriintyneet. 

Ouabaiini on kardiotoninen steroidi, joka säätelee Na+, K+ ATPaasin 

ionipumppausaktiivisuuden lisäksi sen toimintaa signaalinvälityksessä, apoptoosissa 

ja kalsiumvasteessa. Näin ollen on mahdollista, että CLN3 on toiminnallisesti 

kytköksissä Na+, K+ ATPaasin ionipumppausaktiivisuudesta riippumattomiin 

toimintoihin. Cln3-poistogeenisen hiiren aivoleikkeillä sekä potilassoluilla tehdyt 

analyysit osoittivat lisäksi, että fodriinitukiranka on mahdollisesti vioittunut CLN3-

puutteellisissa soluissa. Koska fodriinin on raportoitu liittyvän aksonien ja synapsien 

solukalvoliikenteeseen, hermoimpulssin välittymiseen solusta toiseen sekä 
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hermosolujen ulokkeiden kasvuun, on mahdollista, että myös nämä toiminnot ovat 

vioittuneet CLN3-taudissa. 

CLN3:n vuorovaikutus mikrotubuluksia sitovan solukalvoliikenteessä toimivan 

Hook1-proteiinin kanssa oli puolestaan ensimmäinen osoitus siitä, että CLN3 liittyy 

toiminnallisesti suoraan solukalvoliikenteeseen. Jatkotutkimukset paljastivat, että 

CLN3 vuorovaikuttaa lisäksi mikrotubuluksia pitkin organelleja ja vesikkeleitä 

liikuttavien moottoriproteiinien kanssa ja että nämä vuorovaikutukset tapahtuvat 

todennäköisesti Rab7 GTPaasin ja sen ns. efektoriproteiini RILP:n (engl. Rab7-

interacting lysosomal protein) välityksellä. Rab7:n ja RILP:n on raportoitu 

muodostavan ORP1L-proteiinin (engl. oxysterol-binding protein-related protein 1L) 

kanssa kompleksin, joka aktivoi dyneiini-dynaktiini moottoriproteiinin 

kytkeytymisen myöhäisten endosomien ja lysosomien pinnalle edistäen kyseisten 

organellien kuljetusta mikrotubuluksia pitkin kohti solun keskiosaa. Lisäksi Rab7-

efektorikompleksien on raportoitu osallistuvan kinesiinimoottoriproteiinin alaiseen, 

solun ulkoreunoja kohti tapahtuvaan organellien kuljetukseen. Tässä tutkimuksessa 

tehdyt havainnot viittasivatkin siihen, että edellämainitut myöhäisten endosomien ja 

lysosomien solukalvoliikenteeseen liittyvät tapahtumat ovat häiriintyneet CLN3-

taudissa. CLN3-mutanttien osoitettiin vuorovaikuttavan eri affiniteetilla Rab7:n ja 

RILP:n kanssa, myöhäisten endosomien ja lysosomien solunsisäisen sijainnin 

havaittiin muuttuneen CLN3-mutantteja ilmentävissä soluissa ja Rab7:n 

toiminnallisen GTP/GDP-kierron todettiin olevan häiriintyneen potilassoluissa. 

Lisäksi CLN3-proteiinia poikkeavan vähän ilmentävillä nisäkässoluilla ja CLN3-

puutteellisilla potilassoluilla tehdyt kokeet osoittivat, että lysosomien kinesiini-

välitteinen liikkuminen sekä endosytoidun materiaalin kulkeutuminen myöhäisiin 

endosomeihin ja lysosomeihin ovat hidastuneet CLN3-proteiinin alentuneen 

ilmentymisen seurauksena. Kaiken kaikkiaan em. havainnot viittaavat vahvasti 

siihen, että myös Rab7-välitteiset hermosolujen sisäiset tapahtumat kuten 

autofagosomien solukalvoliikenne sekä kasvutekijöiden aksonaalinen kuljetus ja 

siihen liittyvä hermosolujen ulokkeiden kasvun säätely ovat häiriintyneet CLN3-

taudissa.  

Tämä väitöskirjatutkimus on antanut tärkeää uutta tietoa CLN3:n toiminnoista ja 

niistä mahdollisista solunsisäisistä tapahtumista, jotka ovat ensisijaisesti vioittuneet 

CLN3-taudissa. Tämä tutkimus edistää myös muiden NCL-tautien 

syntymekanismien sekä yleisten hermosolujen rappeutumiseen johtavien prosessien 

määrittämistä.    

  

 

 

Avainsanat: CLN3, lysosomaalinen kertymätauti, lysosomi, neurodegeneraatio, 

neuronaalinen seroidilipofuskinoositauti, proteiinitoiminto, proteiinivuorovaikutus, 

solukalvoliikenne 
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SNAP-25 25-kDa synaptosome-associated protein 

SNARE soluble N-ethylmaleimide-sensitive factor attachment protein 

receptor 

TBST Tris-buffered saline supplemented with Tween-20 

TGN trans-Golgi network 

TIRF total internal reflection fluorescence 

TPP1 human tripeptidyl peptidase 1 protein (CLN2) 

vATPase vacuolar adenosine triphosphatase 

YTH yeast two-hybrid 
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1 Introduction 

The past two decades, the era of molecular genetics, have provided a tremendous 

amount of data on genetics of human hereditary traits. However, interpretation of the 

data on genetic variations has become a challenge that is far from being overcome, 

especially in terms of functional genomics and disease pathomechanism. The 

outcome of a genetic defect is ultimately dependent on the changes that the defect 

may cause on the functions of the proteins. Therefore, the detailed analysis of the 

associated proteins is the prerequisite for understanding the meaning of disease-

associated genetic defects. In the best case, the normal function of the affected 

protein has already been dissected paving the way for further functional analysis 

downstream on the disturbed intracellular pathway(s), hopefully leading to drug 

discovery and treatment of the disease. In many cases, the defective protein is, 

however, uncharacterised, and may not even show homology to known proteins or 

functional protein domains. In these cases, analysis of the protein has to start from 

the scratch, from basic protein characterisation, followed by studies utilising animal 

models, patient samples, and microarray, metabolomics, and modern gene-silencing 

technologies to map defective intracellular processes. As exemplified by the studies 

on CLN3, the topic of this thesis work, defects of a particular protein may lead to a 

spectrum of disturbances at a molecular and cellular level, and consequently, cell 

death. However, only some of the affected cellular processes may be closely 

connected to a given protein and thus, critical for the disease pathogenesis. 

Therefore, functional dissection of disease pathogenesis remains incomplete until 

the interactome of the defective protein is determined and analysed in terms of 

disease-causing mutations. Besides providing clues to molecular background of a 

given hereditary disorder, detailed analysis of the disease-associated proteins and 

functional pathways provides important information usable in research of other 

related diseases. Furthermore, novel findings on intracellular functions, and the roles 

that associated proteins play in them, will further improve our understanding on a 

complexity of a cell and a human body. 

Neuronal ceroid lipofuscinosis (NCLs) are severe and yet incurable recessively 

inherited progressive neurodegenerative disorders of childhood. NCLs are 

characterised by unifying accumulation of lysosomal storage material, neuronal 

death in the central nervous system, epilepsy, and mental and motor decline. 

Although NCLs are mostly diagnosed at birth up to middle school ages, they may 

also have an onset in adulthood (Haltia, 2003; Haltia, 2006). NCLs result from 

mutations in different genes (Kousi et al., 2012). Although first NCL-associated 

genes were identified more than 15 years ago (Consortium, 1995; Vesa et al., 1995), 

interactions of NCL proteins are poorly known (Kyttala et al., 2006; Getty and 
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Pearce, 2011). Consistently, the link between disease-causing mutations and 

neuropathogenesis in NCLs is inadequate (Kyttala et al., 2006). 

Mutations in CLN3 are most common contributors to juvenile onset NCL 

(juvenile CLN3 disease or CLN3 disease, classic juvenile). Juvenile CLN3 disease 

has unique properties among NCL diseases, including vacuolated lymphocytes and 

production of autoantibodies (Chattopadhyay et al., 2002; Haltia, 2003). CLN3 

encodes a lysosomal polytopic membrane protein with unclear functions. More than 

300 reports linked to CLN3 have been published to date, with much of the data 

being achieved using mouse and yeast models (Cooper et al., 2006; Phillips et al., 

2006). However, prior to the initiation of the current study, interactions of CLN3 

were poorly known. Therefore, the aim of this study was to find interaction partners 

of CLN3 and to study them in terms of CLN3-deficiency and juvenile CLN3 

disease. Overall, results of this study showed that CLN3 is functionally and 

molecularly linked to intracellular membrane trafficking. 
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2 Review of the literature 

2.1 Intracellular membrane trafficking 

2.1.1 General features of membrane trafficking 
Intracellular membrane trafficking is a highly orchestrated system indispensable to 

eukaryotic cells due to their compartmentalised nature (reviewed in Aridor and 

Hannan, 2002; Olkkonen and Ikonen, 2006). Eukaryotic cell functions are 

performed within specialised compartments, organelles, enclosed within 

membranes. Communication between organelles, and with the environment, is based 

on the transportation of organelles and small membrane-enclosed structures, 

transport vesicles and tubules, along cytoskeletal tracks. Biogenesis of transport 

vesicles and association of two membrane-enclosed structures are dependent on 

dynamic membrane fission and fusion reactions. This basic model of intracellular 

membrane trafficking is based on the pioneering findings and methodological 

achievements of Claude, de Duve, Palade, and colleagues (Claude, 1975; Duve, 

1975; Palade, 1975). Over the past half century research on membrane trafficking 

has greatly enhanced our understanding on the details of membrane trafficking 

networks and associated components (reviewed in Mellman and Warren, 2000; 

Bonifacino and Glick, 2004). 

Two main intracellular membrane trafficking pathways exist, the 

secretory/biosynthetic pathway and the endocytic pathway (Figure 1). Following 

synthesis and post-translational modifications at endoplasmic reticulum (ER) and 

Golgi complex, newly synthesized membrane-bound or lumenal proteins and lipids 

destined to the compartments beyond the Golgi complex are either secreted to the 

extracellular space within specialised secretory vesicles or transported through a 

vesicular transport system to the plasma membrane or to endosomal compartments 

to support a particular cellular function (reviewed in Mellman and Warren, 2000; 

Bonifacino and Glick, 2004; Saftig and Klumperman, 2009) (Figure 1). The 

secretory/biosynthetic pathway is accompanied by the flow of the in-coming 

material (reviewed in Mellman and Warren, 2000; Bonifacino and Glick, 2004; 

Saftig and Klumperman, 2009) derived from the cell surface or extracellular milieu 

by the cellular uptake, endocytosis (reviewed in Doherty and McMahon, 2009) 

(endocytic pathway). The endocytosed material may be targeted to late endosomes 

(LEs) and lysosomes for degradation and further utilisation in cellular metabolism, 

but may also represent late endosomal/lysosomal housekeeping membrane proteins 

that, following the plasmalemmal transport, utilise endocytic pathway as an 

alternative trafficking route to reach their resident compartment (reviewed in Pryor 

and Luzio, 2009; Saftig and Klumperman, 2009) (Figure 1). 
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The secretory/biosynthetic pathway and the endocytic pathway are balanced by 

recycling pathways that are responsible for organelle homeostasis and the re-use of 

the components of transporting machineries. Recycling occurs at the level of 

endosomes with the main organelle being the early endosome (EE) which receives 

cargo from both main trafficking pathways. In association with recycling 

endosomes, EEs act as a central station for sorting of proteins for the reutilisation at 

the plasma membrane or trans-Golgi network (TGN) (for example, receptors and 

membrane fusion complexes) from proteins destined for degradation (for example, 

receptor ligands) (Figure 1). Another recycling organelle, LE, further delivers 

proteins back to the TGN and thus, together with other endosomal compartments 

connect the endocytic and secretory/biosynthetic routes (reviewed in Bonifacino and 

Rojas, 2006; Saftig and Klumperman, 2009; Johannes and Wunder, 2011). 

 
 

Figure 1. Main pathways of intracellular membrane trafficking. Transport steps 
(arrows) are indicated. Transport vesicles/compartments bud from the donor membrane 
by mechanisms usually involving vesicle coat or coat-like protein complexes assembled 
on the cytosolic face of a vesicle/compartment. Position of COPI, COPII, clathrin, 
caveolin, retromer and ESCRT coats/coat-like structures in the vesicular trafficking 
network is presented (see Chapter 2.1.2.1). In addition, two other processes of 
membrane trafficking are presented, phagocytosis and autophagy, which mediate the 
delivery of extracellular and intracellular material, respectively, to be degraded in 
endolysosomal compartments. Abbreviations: COPI, coat protein complex I; COPII, coat 
protein complex II; ER, endoplasmic reticulum; ESCRT, endosomal sorting complex 
required for transport; TGN, trans-Golgi network. Modified from Bonifacino and Glick, 
2004 and Jahn and Scheller, 2006. Some of the figure components were produced using 
Servier Medical Art (www.servier.com). 
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2.1.2 The life cycle of a transport vesicle – basic mechanisms of 

membrane budding, movement and fusion 

Transport vesicles mediate cargo delivery between distinct intracellular 

compartments. A conventional transport vesicle is spherical and 60–100 nm in 

diameter but larger and more tubulated carrier compartments may also exist 

(Bonifacino and Lippincott-Schwartz, 2003). The life cycle of a transport vesicle 

involves following steps: 1) assembly of the vesicular components in association 

with cargo selection and clustering, 2) fission from the donor compartment, 3) 

vesicle movement along cytoskeletal trails, 4) tethering and docking at the target 

compartment, and 5) fusion with the target membrane (Figure 2) (Bonifacino and 

Glick, 2004). In endolysosomal system, cargo delivery may additionally involve 

compartment conversion/maturation and direct fusions between “permanent” 

organelles (Rink et al., 2005; Vonderheit and Helenius, 2005; and Luzio et al., 2010) 

but nevertheless these alternative delivery mechanisms are dependent on membrane 

fission/fusion processes as well as cytoskeletal motor proteins. 

 

 

Figure 2. The life cycle of a transport vesicle. Soluble and transmembrane cargos 
(TM) are selectively recruited to the budding site of a donor membrane by specific 
receptor and/or adaptor proteins. Budding also involves coat formation on the cytosolic 
face of the budding vesicle (1). Vesicle is released (2) and transported along cytoskeletal 
trails by motor proteins (3). At a correct destination, the transport vesicle is tethered at a 
target membrane by a specific Rab GTPase, tethering factors, and possibly, vesicle coats 
(4). Membrane fusion (5) between two compartments occurs by the assembly of a 
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins) 
complex composed of components from both the donor and the target membrane (v-
SNARE and t-SNARE). For details, see next chapters. For the sake of clarity, formation 
of only one SNARE complex is shown. Modified from Bonifacino and Glick, 2004 and Cai 
et al., 2007. Some of the figure components were produced using Servier Medical Art 
(www.servier.com). 
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2.1.2.1 Vesicle assembly and fission 
The best known mechanism leading to carrier vesicle or tubule formation involves 

vesicle coat assembly. Vesicle coats are curved multimeric cage-like structures, 

scaffolds, on the cytosolic face of the vesicular membrane (Figure 2). Vesicle coats 

are composed of multiple protein species that have an important role in the life cycle 

of a carrier vesicle/compartment. As will be mentioned in this and following 

chapters, coat complexes play a role in membrane deformation, cargo selection and 

vesicle fission as well as vesicle tethering on the target membrane. The three best 

studied vesicle coats clathrin, COPI (coat protein complex I) and COPII (coat 

protein complex II) represent the major coats involved in membrane trafficking 

(reviewed in Kirchhausen, 2000; McMahon and Mills, 2004). COPII coat is 

involved in the transport from the ER to the Golgi compartment whereas COPI coat 

mediates trafficking in the opposite direction, from the Golgi back to the ER, but 

also between individual Golgi stacks (Orci et al., 1986; Barlowe et al., 1994; 

Letourneur et al., 1994). Clathrin, the first coat to be discovered (Roth and Porter, 

1964; Pearse, 1975), has a wider range of action. Clathrin assembly may occur on 

TGN, the plasma membrane and endosomes (McNiven and Thompson, 2006; 

Johannes and Wunder, 2011) (Figure 1). These classical coats form an electron 

dense layer on membranes and thus are detectable under the electron microscope. 

COPI, COPII and clathrin are composed of two distinct protein layers that, upon 

activation, are formed in situ mostly from cytosolic oligomers primarily by protein-

driven mechanisms. The two layers have distinct functions. The inner layer 

recognises and recruits the cargo in vesicle budding and interacts with proteins 

involved in vesicle tethering at the target membrane. The outer segment of vesicle 

coat is responsible for scaffolding and shaping the membrane in vesicle invagination 

(reviewed in Kirchhausen, 2000; McMahon and Mills, 2004). Initiation of COP and 

clathrin-coated vesicle budding is dependent on the small guanosine triphosphatases 

(GTPases) namely secretion-associated and Ras-related protein 1 (Sar1) and ADP-

ribosylation factors (Arfs). Activation, i.e. exchange of guanosine diphosphate 

(GDP) to guanosine triphosphate (GTP), of Sar1 and Arfs leads to exposure of their 

aminoterminal amphipathic α-helix which tends to dive into the membrane inducing 

an asymmetric expansion of one leaflet of the lipid bilayer and subsequently 

promoting membrane curvature. Most importantly, activated Sar1 and Arfs facilitate 

recruitment of cargo recognition and membrane scaffolding components. Whereas 

Sar1 is involved in the sequential recruitment of COPII components, Sec23/Sec24 

heterodimer and Sec13/Sec31 heterotetramer, in the ER (Kirchhausen, 2000; Jensen 

and Schekman, 2011), Arfs operate at the TGN and the cell surface where they 

recruit COPI and clathrin coats (D'Souza-Schorey and Chavrier, 2006). COPI is 

composed of heptameric complexes, coatomers, which contain F-subcomplex 

(β/γ/δ/ζ protein) and B-subcomplex (α/β´/ε) (reviewed in Kirchhausen, 2000;  and 

Beck et al., 2009). The major constituent of clathrin coats is clathrin which is 

recruited as triskelion structures of three clathrin light chains and three heavy chains 
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(Kirchhausen and Harrison, 1981; Ungewickell and Branton, 1981). Clathrin coats 

are additionally characterised by heterotetrameric adaptor protein complexes (APs), 

and Golgi-localised, γ-ear containing, ADP ribosylation factor-binding proteins 

(GGAs) that recognise well-characterised sorting signals located in the cytoplasmic 

domains of transmembrane cargo proteins (Bonifacino and Traub, 2003; Braulke 

and Bonifacino, 2009). Adaptor protein 2 complex (AP-2)/clathrin functions at the 

cell surface while GGA and other APs, AP-1, AP-3, and AP-4, mediate sorting from 

trans-Golgi network to lysosomes (Bonifacino and Traub, 2003).  

In addition to above-mentioned conventional coats, several other types of coats 

are involved in vesicle budding. Caveolae invaginations and subsequent vesicles, 

caveosomes, occur at the plasma membrane and are mainly composed of caveolins 

and cavins specifically enriched in cholesterol and sphingolipid-containing 

membrane microdomains (reviewed in Bastiani and Parton, 2010). Caveolae 

biogenesis is different from that of conventional vesicle coats in many respects. 

Membrane-embedded components of caveolae, caveolins are preassembled in the 

secretory pathway and transported to the plasma membrane where cytosolic cavins 

are recruited to the caveolar domains (reviewed in Bastiani and Parton, 2010; Hayer 

et al., 2010 and references therein). Therefore, activation of caveolar coats at the 

plasma membrane does not involve major coat assembly. Furthermore, unlike 

conventional vesicle scaffolds (reviewed in Bonifacino and Lippincott-Schwartz, 

2003) caveolar coats are stable structures which do not undergo cycles of assembly 

and disassembly (Tagawa et al., 2005). Other notable coat-like structures, retromer 

and ESCRT (endosomal sorting complex required for transport) complexes, 

contribute to retrograde trafficking from EEs to TGN and sorting of proteins from 

LEs to lysosomes, respectively. ESCRT is exceptional among intracellular coats as 

it mediates the inward budding of cargo clustered on the flat bilayered clathrin-

coated areas of late endosomal limiting membrane (reviewed in Saftig and 

Klumperman, 2009).  

Polymerising coats close themselves as spheres that are subsequently scissored 

out of the donor membrane by accessory proteins, such as the large GTPase 

dynamin, or by components of the coat itself (Hinshaw and Schmid, 1995; Bielli et 

al., 2005; Lee et al., 2005). 

2.1.2.2 Membrane compartments on the move – microtubular molecular 
motors 

Motor protein-mediated transport along the cytoskeletal tracks provides an efficient 

system to transport vesicles and organelles. Two cytoskeletal networks and three 

types of motor proteins are involved in the motor protein-mediated transport; the 

actin and the microtubule cytoskeletons, and myosin, dynein and kinesin motor 

proteins. In most cultured cell types, microtubules are organized in a radial manner, 

with one end anchored near the nucleus (minus end) and the other end facing the 

cytoplasm (plus end). The more randomly oriented actin meshwork is considered to 
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facilitate transport in areas where there are few microtubules, for example in the cell 

periphery, synaptic regions and growth cones, and in the interspaces of microtubular 

patches in neuronal projections. In these areas, myosins contribute to synaptic 

exocytosis, recycling of cell surface components from endosomes back to the 

plasma membrane, and transporting nascent endocytic vesicles to the EEs. Whereas 

actin cytoskeleton and myosins mediate slower and short-range local transport, the 

microtubular network in association with dynein and kinesin motors supports the 

long-range, high-speed vesicle movement (reviewed in Mallik and Gross, 2004; 

Soldati and Schliwa, 2006; Hirokawa et al., 2010). Microtubular motor protein 

functions are especially important in cells with elongated structures, for example in 

neuronal axons that may be up to a metre or more in length (Bloom and Goldstein, 

1998). 

There are a total of 45 kinesin genes (also known as KIFs) in a mammalian 

genome, with 38 genes expressed in the brain. Due to alternative mRNA splicing, 

the total number of kinesin proteins has been suggested to be at least twice the 

number of the genes (Miki et al., 2001). Phylogenetically, kinesins are classified into 

14 families termed kinesin 1 to kinesin 14, with kinesin 14 family including two 

subfamilies, kinesin 14A and 14B (Lawrence et al., 2004). Based on the localisation 

of the motor domain within the molecule, kinesins can be grossly grouped into three 

functional classes. N-type kinesins posses the motor domain at or near the N-

terminus, M-type kinesins bear the domain in the middle region of the protein, and 

C-type kinesins are characterised by a C-terminally located motor domain. 

Generally, N-type kinesins drive plus-end-directed and C-type kinesins minus-end-

directed motilities, while M-type kinesins have been implicated in microtubule 

depolymerisation. Since most of the kinesin protein families comprise N-type 

motors, kinesins are often referred to as anterograde motor proteins (reviewed in 

Hirokawa et al., 2009). For dynein, two major functional groups exist, axonemal and 

cytoplasmic dyneins. Axonemal dyneins are involved in ciliary/flagellar beating 

while two cytoplasmic dynein complexes represent the major microtubule minus 

end-directed motor proteins of the cell. Cytoplasmic dynein 2 mediates bi-

directional transport of particles along the flagellar/ciliary microtubules while 

cytoplasmic dynein 1 (termed from now on dynein) serves the intracellular transport 

(Pfister et al., 2005). It is suprising that cells use this single dynein for intracellular 

minus end-directed microtubular transport whereas a wide range of kinesins are 

utilised to transport cargo in the plus end direction.  

Kinesin and dynein motors are composed of several different proteins, and the 

detailed composition and macromolecular structure vary between different motors. 

However, heavy chain is the basic component in each motor complex (reviewed in 

Hirokawa et al., 2010). For dynein and most of the kinesins, dimerisation, mediated 

by the kinesin/dynein heavy chains, is the basis for movement along the 

microtubule. In the folded conformation, the head of each heavy chain contains 

motor domains which bind and hydrolase ATP and associate with the microtubule 
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(Figure 3). Two motor domains provide an efficient way to avoid detachment from 

the cytoskeletal track and thus, allow kinesins to move in a highly processive 

manner. According to the “walking” or “hand-over-hand” model, kinesins use motor 

domains one at a time, one motor domain staying attached to the microtubule while 

the other one is stepping forward. “Walking” is powered by ATP hydrolysis, with 

one ATP being consumed in each step (reviewed in Marx et al., 2009). The tail of 

the folded heavy chain dimer binds an array of kinesin light chains, or dynein 

intermediate chains, dynein light intermediate chains, and dynein light chains which 

then mediate the cargo binding via specific adaptor proteins (reviewed in Hirokawa 

et al., 2009; Kardon and Vale, 2009; Hirokawa et al., 2010) (Figure 3). Dynactin, a 

large multisubunit complex, is an essential motor protein adaptor as it has been 

shown to interact with both dynein and kinesin motors (Blangy et al., 1997; Deacon 

et al., 2003; Berezuk and Schroer, 2007) (Figure 3). Dynactin has been shown to 

target dynein to microtubule plus ends, link dynein to cargo, and enhance 

dynein/kinesin processivity, i.e. ability of the motor to take multiple steps along the 

microtubule without detaching (Berezuk and Schroer, 2007; reviewed in Kardon and 

Vale, 2009). 

 

Figure 3. The structure of two motor protein complexes, dynein-dynactin and 
kinesin-2-dynactin. In dynein, a heavy chain (HC) dimer binds two intermediate chains 
(ICs) and two light intermediate chains (LICs). ICs interact with light chains (LCs) (Kardon 
and Vale, 2009). KIF3A and KIF3B subunits form a kinesin-2 heavy chain dimer which 
associates with KAP3 (KIF3C) and dynactin. Dynactin enhances the processivity of the 
motor proteins. The heavy chains contain motor domains (MDs). Modified from Hirokawa 
et al., 2010. 

2.1.2.3 Membrane fusion 
Membrane fusion reactions are carried out by soluble N-ethylmaleimide-sensitive 

factor (NSF) attachment protein receptor (SNARE) proteins in collaboration with 

tethering factors, Rab proteins and vesicle coat complexes (reviewed in Jahn and 

Scheller, 2006; Cai et al., 2007; Brocker et al., 2010; Angers and Merz, 2011) 
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(Figure 2). Prior to the membrane fusion reactions opposing membranes need to be 

brought in close proximity. Vesicles and organelles moving along cytoskeletal 

tracks are captured on a correct target membrane by tethering factors (Figure 2). 

Tethering factors are generally considered to bridge two membrane compartments 

by interacting with specific Rab GTPases and SNARE proteins (reviewed in Cai et 

al., 2007; Brocker et al., 2010; Angers and Merz, 2011). In addition, vesicle coat 

components have been reported to interact with tethers (reviewed in Cai et al., 2007; 

Angers and Merz, 2011), which argues against the original hypothesis that vesicles 

must remove their coats early after vesicle budding in order to be recognised at the 

target membrane (reviewed in Kirchhausen, 2000; Bonifacino and Glick, 2004). 

With almost 40 different SNARE proteins and a large repertoire of assistant 

proteins mammalian cells are able to direct membrane fusions with a high fidelity 

(McNew et al., 2000; Bock et al., 2001; Angers and Merz, 2011). SNARE proteins 

represent the core elements in the process (Sollner et al., 1993; Weber et al., 1998; 

reviewed in Jahn and Scheller, 2006). SNARE proteins have C-terminal 

transmembrane domain or are at least anchored to the membrane by a fatty acid 

modification. The transmembrane domain is linked to the cytoplasmic SNARE 

domain by a short linker region (Figure 4). Neuronal SNAP-25 (25-kDa 

synaptosome-associated protein) and SNAP-25-like proteins are exceptional among 

SNARE proteins since they contain two SNARE motifs (reviewed in Jahn and 

Scheller, 2006). Each transport vesicle is loaded by one type of SNARE protein, 

originally termed v-SNARE, while each target membrane usually contains three 

types of SNARE proteins, termed t-SNAREs (Sollner et al., 1993; Rothman, 1994) 

(Figure 4). A more adequate classification scheme is based on the amino acid 

identity of the critical residue in the SNARE domain; R-SNARE and Q-SNARE for 

arginine and glutamine, respectively, with Q-SNARE proteins being further divided 

into three subtypes, Qa, Qb and Qc (Bock et al., 2001). The latter classification is 

more adequate in organelle fusions, especially in its homotypic form. SNARE 

domain sequences of SNARE proteins are related to following neuronal proteins: 

vesicle-associated membrane protein (VAMP2, also known as synaptobrevin) (R-

SNAREs), syntaxin 1A (Qa-SNAREs), N-terminal segment of SNAP-25 (Qb-

SNAREs) and C-terminal segment of SNAP-25 (Qc-SNAREs) (Bock et al., 2001). 

Interactions of appropriate SNARE proteins at membrane contact sites lead to 

SNARE complex formation (docking) (Figure 4). The core of the SNARE complex 

is a bundle of four parallel intertwined α-helical SNARE domains each representing 

one of four SNARE subtypes (R-, Qa-, Qb- or Qc-SNARE). In case of SNAP-25 

(and related proteins), only two distinct t-SNARE proteins are required since SNAP-

25 provides two SNARE domains on the t-SNARE complex. During the fusion 

process the configuration of the SNARE complex is transformed from a trans-

SNARE, where opposing SNAREs are in separate membranes, to a cis-SNARE 

where both components reside in the same membrane (reviewed in Jahn and 

Scheller, 2006) (Figure 4). To maintain cellular homeostasis, vesicular components 
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of the fusion machinery are dissociated from the t-SNARE proteins and recycled 

back to the donor membrane. The disassembly of the cis-SNARE complex is 

mediated by NSF linked to the SNARE complex by soluble NSF attachment protein 

(α-SNAP) (Zhao et al., 2012). 

 

 

 

Figure 4. The structure and complex formation of soluble N-ethylmaleimide-
sensitive factor (NSF) attachment protein receptor (SNARE) proteins. Three SNAREs, 
termed Qa-, Qb, and Qc-SNARE, on an acceptor membrane associate with one R-
SNARE on a donor membrane. Resulting complex, a bundle of four parallel intertwined α-
helical SNARE domains, proceeds from trans-configuration through trans-to-cis-transition 
state to a cis-configuration during membrane fusion reaction. Modified from Jahn and 
Scheller, 2006. 

 

 

2.1.3 Rab GTPases 

Rab (Ras-like proteins in brain) GTPases represent the largest subgroup of the Ras 

superfamily of small monomeric GTPases. Small GTPases are molecular switches 

that are activated by GTP-binding and inactivated upon GTP hydrolysis. At least 70 

different Rab GTPases are encoded in mammals, and 11 orthologues (Ypt proteins 

and Sec4 protein) in yeast (Lazar et al., 1997; Jiang and Ramachandran, 2006). 
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2.1.3.1 Basic characteristics of Rab GTPases 

Functions of Rab GTPases are tightly coupled to membrane association and 

nucleotide status (reviewed in Stenmark, 2009). Rabs are synthesised as GDP-bound 

soluble proteins that are presented to geranylgeranyltrasferase (RabGGTase) by Rab 

escort proteins (REPs). Geranylated Rab is then captured by GDP dissociation 

inhibitor (GDI) which masks the novel lipid modification at the C-terminus of the 

protein (reviewed in Goody et al., 2005). At the correct destination, Rab is released 

from the GDI by a membrane-bound GDI displacement factor (GDF) and associates 

with a membrane via the geranyl-geranyl moiety (Dirac-Svejstrup et al., 1997; 

Sivars et al., 2005). Due to their low intrinsic GDP-release and GTP-hydrolysis 

activities Rabs need guanine nucleotide exchange factors (GEFs) and GTPase-

activating proteins (GAPs) to catalyse the GDP to GTP conversion and GTP 

hydrolysis, respectively. The GDP-GTP transit results in conformational changes in 

the Rab protein and subsequently, interactions with downstream interaction partners 

(effectors) (reviewed in Barr and Lambright, 2010). These interactions are active 

until Rab undergoes GTP hydrolysis, and is extracted from the membrane by GDI 

(reviewed in Goody et al., 2005). Rabs remain in the cytosol until they are recruited 

again to the membrane to activate intracellular function specific for them. A 

schematic model of the functional cycle of Rab GTPases is represented in Figure 5. 

Rab GTPases have characteristic, although partly overlapping membrane 

localisation within the cell (reviewed in Stenmark, 2009; Hutagalung and Novick, 

2011). Mechanisms that determine the compartment-specific membrane positioning 

of Rabs are incompletely understood. It has been suggested that membrane-bound 

GDFs play an important role in the Rab targeting as they are able to expose the 

prenyl moiety and thus enhance membrane insertion of the Rab protein. However, to 

date only one GDF has been identified in mammals and it seems to interact with 

multiple Rab proteins (Dirac-Svejstrup et al., 1997; Sivars et al., 2005). Therefore, it 

is currently uncertain whether Rab GTPases are localised to specific membranes via 

interactions with compartment-specific GDFs. It has also been suggested that GDFs 

may only mediate the initial delivery of Rab proteins to the membrane, and other 

factors, including lipid microdomain constituents, GEFs and/or downstream Rab 

interacting proteins (effectors) may direct the steady-state localisation of each 

individual Rab protein (Pfeffer, 2005). 
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Figure 5. The nucleotide and the membrane association/dissociation cycle of Rab 
GTPases. A Rab escort protein (REP) presents a newly synthesised, inactive GDP-
bound Rab GTPase to a geranyl-geranyltransferase (GGT). A geranyl-geranyl moiety is 
masked by a GDP dissociation inhibitor (GDI), which keeps Rab in the cytoplasm. The 
mask is removed by a membrane-bound GDI displacement factor (GDF), which allows 
Rab to associate with the membrane. Exchange of GDP to GTP by a guanine exchange 
factor (GEF) results in a conformational change of Rab GTPase. The active GTP-bound 
conformation is recognised by a specific Rab effector(s) and a resulting Rab GTPase 
effector complex is then able to execute its function(s) until the inactive conformation of 
Rab is restored by a GTPase-activating protein (GAP) and extracted from the membrane 
by the GDI. 

Proteins that interact with Rabs usually in their GTP-bound state and mediate their 

regulatory actions are termed Rab effectors. Rabs and their effectors are directly 

involved in membrane trafficking and in fact, they play a role at almost every stage 

of vesicular trafficking. Rabs are pivotal in vesicle tethering and fusion, like 

mentioned in Chapter 2.1.2.3. In addition, Rabs are involved in cargo selection, coat 

assembly and vesicle uncoating. Furthermore, Rabs also mediate vesicle and 

organelle motility along actin and microtubules and they seem to be important co-

ordinators in attaching the right carrier vesicle/organelle to the right myosin, kinesin 

or dynein motor protein complex. (reviewed in Stenmark, 2009; Hutagalung and 

Novick, 2011). 
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2.1.3.2 Rab7 
Rab7 has been localised to LEs, lysosomes, melanosomes and (auto)phagosomal 

membranes (Chavrier et al., 1990; Feng et al., 1995; Meresse et al., 1995; Vitelli et 

al., 1997; Bucci et al., 2000; Gomez et al., 2001; Gutierrez et al., 2004; Jager et al., 

2004). Trafficking experiments using different ligands/cargos have indicated that 

Rab7 is required for the late steps of endocytosis, although it has remained 

controversial as to whether Rab7 regulates membrane trafficking between early and 

late endosomes, or between late endosomes and lysosomes, or both (Feng et al., 

1995; Meresse et al., 1995; Mukhopadhyay et al., 1997; Vitelli et al., 1997; Press et 

al., 1998; Bucci et al., 2000; Vonderheit and Helenius, 2005; Ceresa and Bahr, 2006; 

Vanlandingham and Ceresa, 2009). Most of the reports support the view that at least 

the trafficking between LEs and lysosomes is dependent on Rab7. In fact, Rab7 

seems to be the only Rab-family protein shown to regulate the membrane trafficking 

step between these two compartments. In addition, Rab7 is needed for maturation of 

late autophagic vesicles (Gutierrez et al., 2004; Jager et al., 2004), axonal retrograde 

trafficking of neurotrophins and neurite outgrowth (Saxena et al., 2005; Deinhardt et 

al., 2006; Cogli et al., 2010). The role that Rab7 plays in neurotrophin transport has 

been suggested (Mitra et al., 2011) to contribute to neurodegeneration of sensory 

and motor neurons in Charcot-Marie-Tooth type 2B (CMT2B) disease, a rare 

autosomal recessive axonal neuropathy caused by gain-of-function mutations in the 

GTP binding and hydrolysis domain of Rab7 (Verhoeven et al., 2003; Spinosa et al., 

2008). Rab7 mutations may also cause autosomal recessive hereditary sensory and 

autonomic neuropathy (HSAN) (Klein et al., 2005).   

Several Rab7 effectors have been identified, namely Rabring7 (Rab7-interacting 

RING finger protein) (Mizuno et al., 2003), RILP (Rab7 interacting lysosomal 

protein) (Cantalupo et al., 2001), ORP1L (oxysterol-binding protein-related protein 

1L) (Johansson et al., 2005), FYCO1 (FYVE and coiled-coil domain containing 1) 

(Pankiv et al., 2010), Rubicon (Sun et al., 2010), retromer (Rojas et al., 2008; 

Seaman et al., 2009) and HOPS (homotypic fusion and vacuole protein sorting) 

tethering complex (Price et al., 2000; Wurmser et al., 2000). These have 

significantly contributed to the understanding of Rab7 functions in the last few years 

(reviewed in Wang et al., 2011). Several Rab7 effector complexes play a role in 

microtubular transport, and both dynein and kinesin motor proteins seem to be 

regulated by Rab7 effector complexes. Rab7-FYCO1-kinesin complex is involved in 

plus-end directed microtubular transport of autophagic vesicles (Pankiv et al., 2010). 

RILP and ORP1L are part of the same Rab7-RILP-ORP1L complex which recruits 

the dynein-dynactin motor complex to LEs/lysosomes and thus, facilitates minus 

end-directed movement of these organelles (Jordens et al., 2001; Johansson et al., 

2005; Johansson et al., 2007). Furthermore, Rab7-RILP-ORP1L complex is able to 

regulate the intracellular positioning of LEs on the basis of the luminal cholesterol 

content and subsequent interactions of ORP1L with an ER membrane protein 

(Rocha et al., 2009). Rabring7 may also be involved in dynein-mediated transport of 
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LEs since it tends to induce their perinuclear aggregation (Mizuno et al., 2003). 

Rabring7 has also E3 ligase activity and it affects the degradation of epidermal 

growth factor (Mizuno et al., 2003; Sakane et al., 2007). However, it does not 

ubiquitinate EGF (Sakane et al., 2007). Due to the finding that RILP also interacts 

with the ESCRT complex, which is involved in the lysosomal sorting of 

ubiquitinated proteins (Progida et al., 2006; Wang and Hong, 2006; Progida et al., 

2007), it was suggested that perhaps also Rabring7 is somehow involved in the 

process (Sakane et al., 2007). ESCRT is not the only coat complex that Rab7 may 

bind. Rab7 associates with retromer and regulates its recruitment to LEs (Rojas et 

al., 2008; Seaman et al., 2009). Finally, the yeast orthologue of Rab7, Ypt7, has 

been shown to enhance late endosomal membrane fusion by recruiting the HOPS 

tethering factor (Price et al., 2000; Wurmser et al., 2000; reviewed in Wang et al., 

2011). 

2.2 Lysosomes 

2.2.1 Characteristics of lysosomes 
Lysosomes, first discovered and named by de Duve over 50 years ago (Duve, 1975), 

are primarily characterised as acidic organelles which contain the primary hydrolysis 

machinery of the cell required for the degradation of proteins, lipids, and 

carbohydrates, but also for whole organelle degradation. Lysosomes are globular or 

tubular-shaped vacuoles with variable electron-dense constituents. Their lumen is 

acidic (pH 4.5 – 5) and contains membrane sheets and a few intraluminal vesicles. 

Lysosomes are limited by a single phospholipid bilayer rich in glycosylated proteins 

which form a so-called protective glycogalyx on the luminal side of the limiting 

membrane. In addition, lack of mannose 6-phosphate receptors is characteristic to 

lysosomes. Lysosomal compartments receive their resident proteins via different 

targeting mechanisms, and macromolecules destined for lysosomal degradation 

enter the lysosome directly via specific membrane transporters or indirectly by 

membrane fusion reactions with LEs and (auto)phagosomal organelles. Degradation 

products are transported across the lysosomal membrane and released into the 

cytosol to allow their reuse in cell metabolism. Lysosomes also release degradative 

enzymes into the cytosol in order to contribute to apoptosis, or extracellular space 

via fusing with the plasma membrane in order to degrade extracellular material and 

to target lysosomal constituents to the cell surface. (Reviewed in Eskelinen et al., 

2003; Luzio et al., 2007; Braulke and Bonifacino, 2009; Lubke et al., 2009; 

Schroder et al., 2010). 
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2.2.2 Proteome and functions of lysosomes 
Lysosomes contain more than 60 different soluble acid hydrolases and non-

enzymatic cofactors (e.g., glycosidases, lipases, nucleases, peptidases, phosphatases, 

proteinases, sulfatases) (Schroder et al., 2010 and references therein). Soluble 

lysosomal proteins are synthesised as inactive large precursors. The precursors 

contain an N-terminal signal sequence which mediates protein translocation into the 

ER lumen and subsequently, is cleaved by a signal peptidase. Lysosomal proteins 

usually become heavily glycosylated during their transport along the biosynthetic 

pathway. This glycosylation process initiates in the ER and continues in the Golgi 

compartment (reviewed in Braulke and Bonifacino, 2009). Oligosaccharide 

modifications play a significant role in the endolysosomal targeting, a process that 

occurs in a receptor-mediated fashion (reviewed in Braulke and Bonifacino, 2009; 

Saftig and Klumperman, 2009). Most nascent soluble lysosomal proteins receive a 

mannose 6-phosphate moiety in the Golgi. The moiety is then captured by two 

different mannose 6-phosphate receptors (MPRs) in the TGN; 46 kDa cation-

dependent MPR (CD-MPR or MPR46) and 300 kDa cation-independent MPR (CI-

MPR or MPR300). MPRs contain dileucine and tyrosine-based sorting signals in 

their cytoplasmic domains which are recognised by clathrin-associated AP-1 and/or 

GGA adaptor proteins in the TGN. These adaptor proteins then recruit MPR-

associated lysosomal cargo into clathrin-coated vesicles to be transported along the 

biosynthetic pathway, usually directly to the endosomal system, although, some may 

also escape to the cell surface. Upon entering the acidic environment of LEs, cargo 

become dephosphorylated [except in the brain (Sleat et al., 1996; Sleat et al., 2005)], 

and subsequently, are released from the receptor (reviewed in Braulke and 

Bonifacino, 2009; Saftig and Klumperman, 2009). This allows delivery of lysosomal 

soluble proteins to their final destination whereas MPRs are recycled back to the 

TGN (Braulke and Bonifacino, 2009; Saftig and Klumperman, 2009). In addition, 

soluble lysosomal proteins undergo a limited proteolysis in the acidic environment 

of Les, which results in their activation. This is an efficient system to avoid cellular 

damages caused by prematurely active lysosomal enzymes.  

MPR-mediated transport is not the only way to reach the lysosomal lumen, as 

evidenced by the fact that some soluble lysosomal proteins are able to reach the 

lysosome in conditions defective for the mannose 6-phosphate targeting system 

(Owada and Neufeld, 1982; Waheed et al., 1982; Little et al., 1987; Dittmer et al., 

1999; Gelfman et al., 2007). Concomitantly, alternative receptor proteins have been 

identified. For example, β-glucocerebrosidase is specifically transported to 

lysosomes in association with lysosomal integral membrane protein type 2 (LIMP-

2), while the sphingolipid activator proteins (saposins), the soluble hydrolases 

cathepsin D and H, and acid sphingomyelinase may use sortilin in their lysosomal 

targeting (Petersen et al., 1997; Lefrancois et al., 2003; Ni and Morales, 2006; 

Reczek et al., 2007; Canuel et al., 2008). 
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First lysosomal membrane proteins, namely lysosome-associated membrane 
proteins (LAMPs) and lysosomal integral membrane proteins (LIMPs), were 
described in the 1980s (Chen et al., 1985; Lewis et al., 1985; Barriocanal et al., 
1986). However, a more thorough understanding on lysosomal membrane 
constituents has awaited for development of appropriate mass spectrometric 
analyses, and many new lysosomal membrane proteins have just recently been 
identified (reviewed in Lubke et al., 2009; Schroder et al., 2010). Depending on the 
study, the number of identified lysosomal membrane proteins ranges from one 
hundred to several hundreds (Schroder et al., 2010 and references therein). 
Compared to soluble lysosomal proteins, less is known on the targeting of lysosomal 
membrane proteins. Many of them have been observed to utilise clathrin/AP-
1/GGA-dependent mechanisms to exit from the TGN (reviewed in Bonifacino and 
Traub, 2003; Braulke and Bonifacino, 2009; Saftig and Klumperman, 2009). 
Lysosomal membrane proteins may travel to the endolysosomal system either 
directly or indirectly via the cell surface. Together with the observations that some 
lysosomal membrane proteins may contain several distinct sorting motifs, and that 
their targeting may not depend on conventional clathrin/GGA-adaptor system, this 
indicates that lysosomal membrane proteins may use distinct trafficking pathways in 
different cellular conditions (Saftig and Klumperman, 2009).  

Functions of lysosomal membrane proteins involve the establishment of the pH 
gradient between cytoplasm and lysosomal lumen, compartmentalisation of 
hydrolases, membrane fusions with other organelles, and transport across the 
lysosomal membrane (Saftig et al., 2010). The most abundant protein constituents of 
lysosomal membranes are the highly glycosylated lysosome-associated membrane 
proteins 1 and 2 (LAMP-1 and LAMP-2, respectively), and lysosomal integral 
membrane protein type 1 and 2 (LIMP-1 and LIMP-2) that together account 
approximately 50% of the total membrane protein content of the lysosome 
(Winchester, 2001). These proteins form a protective glycocalyx coat on the inner 
leaflet of the lysosomal membrane but are implicated in other lysosomal functions as 
well (see below) (Eskelinen et al., 2003; Saftig and Klumperman, 2009). V-type H+ 
ATPase is a functionally important lysosomal membrane protein as it establishes the 
internal acidic pH essential for enzymatic activities and maturation of hydrolases 
(reviewed in Hinton et al., 2009). Most importantly, lysosomes comprise several 
types of transporters that either export lysosomal catabolites from the lysosomal 
lumen to cytosol or import macromolecules for degradation (reviewed in Eskelinen 
et al., 2003; Schroder et al., 2010). Indeed, more than 20 different transport 
processes have been demonstrated for the lysosomal membrane, including transport 
of amino acids, carbohydrate derivatives, inorganic ions, nucleotides and small 
peptides (Sagne and Gasnier, 2008). For example, sialin and cystinosin transport the 
degradation products sialic/glucuronic acids and cystine, respectively, to the cytosol 
(reviewed in Ruivo et al., 2009). Another lysosomal integral membrane protein, 
NPC1 (Niemann-Pick C1), has been implicated in the removal of LDL-derived 
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cholesterol from lysosomes (reviewed in Peake and Vance, 2010). Fusion of 

lysosomes with LEs, (auto)phagosomes, and the plasma membrane are mediated by 

a specific R-SNARE protein, vesicle-associated membrane protein 7 (VAMP7) 

(reviewed in Luzio et al., 2007; Luzio et al., 2010). Furthermore, lysosomal 

membrane transiently associates with motor proteins, most likely dynein, kinesin-1 

and kinesin-2 (Brown et al., 2005 and references therein; Loubery et al., 2008), 

which move lysosomes to membrane fusion sites. These two above mentioned 

processes are regulated by Rab7 GTPase which is specifically localised to LEs and 

lysosomes as discussed in Chapter 2.1.3.2. 

Lysosomes are involved in a wide range of cellular activities. Lysosomes and 

their constituents are utilised in the turnover of long-lived proteins and organelles, 

downregulation of activated plasma membrane receptors, cholesterol homeostasis, 

plasma membrane repair, antigen processing and presentation, and inactivation of 

pathogens (reviewed in Eskelinen et al., 2003; Saftig and Klumperman, 2009; 

Schroder et al., 2010). Furthermore, lysosomal hydrolases are released into the 

extracellular space via constitutive secretion or lysosomal exocytosis, and utilised in 

tumor metastasis and propagation, angiogenesis, bone remodelling and cell death 

signalling (reviewed in Watts, 2011). LAMP-1 and especially LAMP-2 have an 

essential role in the lysosomal function as they participate in the (auto)phagosomal 

maturation which is an important process contributing to multiple cellular activities 

(reviewed in Eskelinen et al., 2003; Eskelinen and Saftig, 2009; Saftig et al., 2010). 

LAMPs have also been indicated to regulate the dynein/dynactin-dependent 

movement of (auto)phagosomes to perinuclear areas in order to facilitate their fusion 

with lysosomes and thus, final maturation (Huynh et al., 2007 and references 

therein). In addition, LAMP-2A isoform interacts with a subset of cytosolic proteins 

to enhance their direct transport across the lysosomal limiting membrane in a 

process termed chaperone-mediated autophagy (Cuervo and Dice, 1996). Distinct 

from its (auto)phagosomal functions, LAMP-2 is additionally involved in 

endosomal/lysosomal cholesterol export (Schneede et al., 2011). The LAMPs are an 

excellent example showing that lysosomal proteins may have effects on a wide 

range of cellular activities. 

2.2.3 Lysosomal storage disorders 
Lysosomal storage disorders (LSDs) (Hers, 1965) mirror the physiological 

importance of the lysosomal system. Indeed, defects in more than 40 different 

lysosomal or lysosomal system-associated proteins have so far been implicated as 

causing storage disorder with widespread tissue and organ involvement. Individually, 

LSDs are rare but more common as a group, with a combined prevalence being 

about 1:5000 (Futerman and van Meer, 2004). 

LSDs are mostly recessively inherited, fatal diseases characterised by a 

progressive accumulation of undegraded metabolite(s) in the lysosome but also in 
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other intracellular and extracellular locations. Storage in a given LSD can be rather 

heterogeneous. Several types of macromolecules have been identified to be stored in 

LSDs, including sphingolipids, mucopolysaccharides, oligosaccharides, 

glycoproteins, lipids, sulfatides, and specific proteins and amino acids (Futerman 

and van Meer, 2004; Ballabio and Gieselmann, 2009). Identity of accumulated 

material has been used as a basis for classification of LSDs; for example, lipids 

accumulate in lipidosis and mucopolysaccharides in mucopolysaccharidosis. 

However, this classification scheme does not necessarily depict the type of primary 

cellular defect in a given LSD as defects in functionally different proteins may lead 

to accumulation of similar intracellular compound(s). Therefore, LSDs have 

alternatively been grouped according to the characteristics of the defective protein 

(Futerman and van Meer, 2004; Bellettato and Scarpa, 2010). Most of the LSDs are 

due to mutations in soluble lysosomal hydrolases. Mutations can directly reduce 

their catalytic activity but may also affect indirectly via disturbing their folding and 

glycosylation in the ER and the Golgi complex. Lysosomal storage can also result 

from mutations in non-enzymatic lysosomal proteins (including above-mentioned 

sialin, cystinosin, NPC1 and LAMP-2), or even in non-lysosomal proteins, and both 

soluble and integral membrane proteins can be involved. These cases are due to 

defects of proteins acting either in the activation/stabilisation, trafficking, or 

posttranslational modification of lysosomal enzymes, or transportation of 

degradation end products or ions across the lysosomal limiting membrane (Futerman 

and van Meer, 2004; Ruivo et al., 2009). Furthermore, LAMP-2 deficiency has 

shown that defective organelle fusion and motility may also underlie lysosomal 

storage accumulation (Ruivo et al., 2009). Examples of primary functional defects 

leading to lysosomal storage disorders are presented in Table 1. Although the 

genetic defect has been identified in the known LSDs, the primary functional insult 

has remained elusive in some cases. A representative example are neuronal ceroid 

lipofuscinoses, a group of diseases caused by unknown defects in lysosomal and 

non-lysosomal proteins (see Chapter 2.3.1). 
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Table 1. Examples of intracellular defects that may result in lysosomal storage disorder. 

 

 

 

In addition to the accumulation of storage material, LSDs are characterised by their 

tendency to affect several tissues and organs. However, each individual LSD has a 

distinct clinical and pathological picture, a phenomenon most likely resulting from 

differences in the nature of stored material and subsequently, in the effects they have 

on cellular activities (Ballabio and Gieselmann, 2009). Moreover, most LSDs may 

manifest themselves as various clinical phenotypes from early severe disease to late-

onset mild phenotypes. However, phenotype may not necessarily depend on a given 

genotype, as highlighted by the fact that disease course can be highly variable 

among patients carrying the same disease mutation. Together, these observations 
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Niemann-Pick type C 
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suggest that the disease outcome may additionally depend on modifying genes and 

environmental factors (Futerman and van Meer, 2004). 

Approximately two-thirds of LSDs affect the brain where the disease manifests as 

seizures, mental and physical retardation, sensory loss, sleep and behavioural 

problems and neurodegeneration (Walkley, 2009). The mechanisms that connect 

storage accumulation and cellular dysfunction are not fully understood but they 

seem to occupy several biochemical and cellular pathways. Indeed, many processes 

have been shown to be affected in LSDs including intracellular signalling, general 

lysosomal degradation, membrane trafficking, autophagosytosis, intracellular Ca2+ 

homeostasis, mitochondrial functions and lipid metabolism (Ballabio and 

Gieselmann, 2009; Bellettato and Scarpa, 2010; Parkinson-Lawrence et al., 2010). It 

is considered that the pathogenesis of neurodegenerative LSDs is a multistep process 

where the accumulation of storage material induces a cascade of secondary events 

which then ultimately lead to neuronal dysfunction, microglia activation and 

subsequently, collapse of the neuronal homeostasis (Walkley, 2009; Bellettato and 

Scarpa, 2010). Moreover, it is noteworthy that some LSD-associated proteins have 

been suggested to localize to and exhibit functions in non-lysosomal compartments, 

including the plasma membrane, synaptic vesicles and LAMP-1-negative vesicles 

along the neuronal projections and synaptosomes (Mencarelli et al., 2005; Ruivo et 

al., 2009 and see Chapter 2.3.1.2). Therefore it is possible that defects in 

extralysosomal functions may be of high importance in the pathogenesis of some 

LSDs. 

2.3 Juvenile CLN3 disease (earlier referred to as juvenile 
neuronal ceroid lipofuscinosis, JNCL, Batten disease) 

2.3.1 Neuronal ceroid lipofuscinosis (NCL) 

2.3.1.1 Main characteristics of NCLs 
Neuronal ceroid lipofuscinoses (NCLs) are a group of hereditary progressive 

neurodegenerative disorders usually occurring in childhood. Except a few rare cases, 

NCLs follow autosomal recessive type of inheritance. NCLs are characterised by 

variable but progressive symptoms including epileptic seizures, blindness, decline in 

motor and cognitive skills, cerebellar and cerebral cortical atrophy, and premature 

death (reviewed in Haltia, 2003; and Haltia, 2006). The most unifying feature of the 

NCLs is the lysosomal accumulation of autofluorescent storage material, termed 

ceroid lipofuscin or lipofuscin-like, in a variety of tissues, including brain (reviewed 

in Haltia, 2003; Mole et al., 2005; and Seehafer and Pearce, 2006) and thus, NCLs 

are also considered as lysosomal storage disorders (LSDs). However, the stored 

material in NCLs is not a disease-specific substrate. The storage deposits in NCLs 

are mainly composed of mitochondrial ATP synthase subunit c (Palmer et al., 1989; 

Fearnley et al., 1990; reviewed in Haltia, 2003; and Mole et al., 2005) or saposin A 
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and D (Tyynela et al., 1993; reviewed in Haltia, 2003; and Mole et al., 2005) which 

may accumulate in other lysosomal storage disorders as well (Morimoto et al., 1990; 

Elleder et al., 1997b). Based on the ultrastructural appearance, NCL storage deposits 

are classified into four basic types: granular osmiophilic deposits (GROD), 

curvilinear profiles (CLP), fingerprint profiles (FPP), and rectilinear profiles (RLP). 

The storage material in a particular case may predominantly show only one of the 

four main morphologies or may have a mixed fine structure (reviewed in Haltia, 

2003; and Mole et al., 2005). Examples of these storage materials are shown in 

Figure 6. 

 

 
 

Figure 6. Ultrastructural appearance of storage deposits characteristic to neuronal 
ceroid lipofuscinoses. A) Granular osmiophilic deposits (GROD), B) curvilinear profiles 
(CLP), and C) fingerprint profiles (FPP). Figure courtesy of Professor Juhani Rapola, 
University of Helsinki. 
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The human NCLs were originally classified as infantile (INCL, Haltia-Santavuori), 

late infantile (LINCL, Jansky-Bielschowsky), juvenile (JNCL, Spielmeyer-Vogt or 

Batten disease), and adult NCL (ANCL), the latter of which can be separated in 

three clinical phenotypes, recessively inherited Kufs disease type A or type B and 

dominantly inherited Parry disease. With time, it has become evident that NCLs are 

clinically and genetically heterogeneous, and several causative genes and phenotypic 

variant forms are now recognised, especially among late infantile onset families 

(thus earlier referred to as variant LINCL, or vLINCL, to distinguish from classic 

LINCL patients) (reviewed in Haltia, 2003; Mole et al., 2005; and Kousi et al., 

2012). Therefore, a new classification has been adopted. New nomenclature is 

primarily based on the affected gene, specified with the age of onset and other main 

clinical and pathological features. For example, juvenile onset NCLs associated with 

CLN3 mutations are classified as CLN3 disease, classic juvenile (juvenile CLN3 

disease) while infantile onset cases with CLN3 defects are referred to as CLN3 

disease, infantile (or infantile CLN3 disease) (Kousi et al., 2012; NCL Resource, 

2012). To date, nine causative genes have been identified for NCLs, including PPT1 

(CLN1), TPP1 (CLN2), CLN3, DNAJC5 (CLN4), CLN5, CLN6, MFSD8 (CLN7), 

CLN8, and CTSD (CLN10) (Noskova et al., 2011; reviewed in Kousi et al., 2012). In 

addition, heterozygous mutations in two additional genes encoding chloride channel 

6 (CLCN6) and N-sulfoglucosamine sulfohydrolase (sulfamidase, SGSH), have 

been reported in some patients (Poet et al., 2006; Sleat et al., 2009). Reported 

mutations in NCL-related genes are collected in NCL Mutation Database (NCL 

Resource). In addition, several additional NCL susceptibility genes are thought to 

exist. Juvenile onset NCL not due to mutations in CLN3 (designated as juvenile 

CLN9 disease), and a variant form of late infantile NCL present in Turkish families, 

and negative for CLN6, CLN8 and MFSD8 (CLN7), are expected to result from 

mutations in so far unidentified genes (reviewed in Siintola et al., 2006a; Siintola et 

al., 2007; Kousi et al., 2009; reviewed in Kousi et al., 2012). Furthermore, despite 

the recent progress in genetics of adult onset NCL a significant fraction of 

associated autosomal dominant adult onset NCL families and families associated 

with recessive Kufs type B are still of unknown genetic etiology (Sleat et al., 2009; 

Arsov et al., 2011; Noskova et al., 2011). Interestingly, a possible genetic interplay 

between NCL genes has recently been demonstrated (Kousi, 2011). Several 

heterozygous mutations in NCL loci were observed to associate with disease-

causing mutations in other NCL loci. This suggests that other NCL genes may act as 

modifiers of a given NCL phenotype (Kousi, 2011). A summary of NCL genes, 

respective proteins, clinical phenotypes, and main characteristics of the associated 

storage material are shown in Table 2. 



Review of the literature 

 

THL — Research 82/2012 42 
Molecular Interactions of Neuronal 

Ceroid Lipofuscinosis Protein CLN3 

  

  
  
 

T
a

b
le

 2
. 

T
h

e
 n

e
u

ro
n

a
l 

c
e

ro
id

 l
ip

o
fu

s
c
in

o
s
e
s
 c

la
s
s
if
ie

d
 a

c
c
o

rd
in

g
 t

o
 t

h
e
 a

ff
e

c
te

d
 g

e
n
e

. 
C

lin
ic

a
l 

p
h

e
n

o
ty

p
e
s
 (

ty
p

ic
a
l 

p
h

e
n
o

ty
p

e
s
 a

re
 

s
h

o
w

n
 i
n

 b
o

ld
),

 m
a
in

 s
to

ra
g

e
 c

o
m

p
o
n

e
n

t(
s
),

 a
n

d
 m

a
in

 u
lt
ra

s
tr

u
c
tu

re
(s

) 
o

f 
th

e
 s

to
ra

g
e

 m
a

te
ri
a

l 
a

re
 p

re
s
e

n
te

d
. 

 

G
en

e 
P

r
o

te
in

 
C

li
n

ic
a
l 

p
h

e
n

o
ty

p
e 

M
a

in
 u

lt
ra

st
r
u

c
tu

re
 o

f 
th

e
 s

to
ra

g
e 

S
to

r
a
g
e
 c

o
m

p
o

n
e
n

t 

PP
T1

 (C
LN

1)
 

PP
T1

 
C

L
N

1
 d

is
ea

se
, 

cl
a

ss
ic

 i
n

fa
n

ti
le

 

C
LN

1 
di

se
as

e,
 la

te
 in

fa
nt

ile
 

C
LN

1 
di

se
as

e,
 ju

ve
ni

le
 

C
LN

1 
di

se
as

e,
 a

du
lt 

 

G
R

O
D

 
G

R
O

D
 

G
R

O
D

 
G

R
O

D
 

SA
Ps

 A
 a

nd
 D

 

TP
P1

 (C
LN

2)
 

TP
P1

 
C

L
N

2
 d

is
ea

se
, 

cl
a

ss
ic

 l
a

te
 i

n
fa

n
ti

le
 

C
LN

2 
di

se
as

e,
 in

fa
nt

ile
 

C
LN

2 
di

se
as

e,
 ju

ve
ni

le
 

C
LP

 
C

LP
 

C
LP

 
su

bu
ni

t c
 

C
LN

3 
C

LN
3 

 
C

L
N

3
 d

is
ea

se
, 

cl
a

ss
ic

 j
u

v
e
n

il
e
 

C
LN

3 
di

se
as

e,
 p

ro
tra

ct
ed

 
C

LN
3 

di
se

as
e,

 in
fa

nt
ile

 

FP
P 

or
 F

PP
/C

LP
  

FP
P 

or
 F

PP
/C

LP
 

N
o 

in
cl

us
io

ns
 o

bs
er

ve
d 

su
bu

ni
t c

 

D
N

A
JC

5 
(C

LN
4)

 
C

SP
α 

a
d

u
lt

 N
C

L
 d

is
e
a

se
 (

a
u

to
so

m
a

l 
d

o
m

in
a

n
t,

 P
a

rr
y
 d

is
e
a

se
) 

G
R

O
D

 
SA

Ps
 A

 a
nd

 D
 

C
LN

5 
C

LN
5 

C
L

N
5

 d
is

ea
se

, 
la

te
 i

n
fa

n
ti

le
 v

a
r
ia

n
t 

C
LN

5 
di

se
as

e,
 in

fa
nt

ile
 

C
LN

5 
di

se
as

e,
 ju

ve
ni

le
 

C
LN

5 
di

se
as

e,
 a

du
lt 

FP
P 

G
R

O
D

 
FP

P 
G

R
O

D
  

su
bu

ni
t c

 

C
LN

6 
C

LN
6 

C
L

N
6

 d
is

ea
se

, 
la

te
 i

n
fa

n
ti

le
 v

a
r
ia

n
t 

C
LN

6 
di

se
as

e,
 a

du
lt 

(a
ut

os
om

al
 re

ce
ss

iv
e,

 K
uf

s t
yp

e 
A

) 
FP

P/
C

LP
 

FP
P 

or
 G

R
O

D
 

su
bu

ni
t c

 

M
F

SD
8 

(C
LN

7)
 

M
FS

D
8 

C
L

N
7

 d
is

ea
se

, 
la

te
 i

n
fa

n
ti

le
 v

a
r
ia

n
t 

C
LN

7 
di

se
as

e,
 ju

ve
ni

le
 

FP
P 

 
n.

d.
 

n.
d.

 

C
LN

8 
C

LN
8 

 
C

L
N

8
 d

is
ea

se
, 

la
te

 i
n

fa
n

ti
le

 v
a
r
ia

n
t 

C
LN

8 
di

se
as

e,
 E

PM
R

 
FP

P,
 F

PP
/C

LP
, F

PP
/C

LP
/G

R
O

D
 

C
LP

 
su

bu
ni

t c
 

n
.d

. 
(C

LN
9)

 
n.

d.
 

C
L

N
9

 d
is

ea
se

, 
ju

v
e
n

il
e
 v

a
r
ia

n
t 

G
R

O
D

/ C
LP

 
su

bu
ni

t c
 

C
TS

D
 (C

LN
10

) 
C

at
he

ps
in

 D
 

C
L

N
1
0

 d
is

e
a

se
, 
co

n
g
e
n

it
a
l 

C
LN

10
 d

is
ea

se
, j

uv
en

ile
 

G
R

O
D

 
G

R
O

D
 

SA
P 

D
1)

 

A
bb

re
vi

at
io

ns
: C

LN
1 

et
c.

, c
er

oi
d 

lip
of

us
ci

no
si

s, 
ne

ur
on

al
 1

 e
tc

.; 
n.

d.
, n

ot
 d

et
er

m
in

ed
; C

LP
, c

ur
vi

lin
ea

r p
ro

fil
es

; D
N

A
JC

5,
 D

na
J 

ho
m

ol
og

ue
 s

ub
fa

m
ily

 C
 m

em
be

r 5
; 

C
SP

α,
 c

ys
te

in
e 

st
rin

g 
pr

ot
ei

n 
al

ph
a;

 E
PM

R
, p

ro
gr

es
si

ve
 e

pi
le

ps
y 

w
ith

 m
en

ta
l r

et
ar

da
tio

n;
 F

PP
, f

in
ge

rp
rin

t p
ro

fil
es

; G
R

O
D

, g
ra

nu
la

r o
sm

io
ph

ili
c 

de
po

si
ts

; M
FS

D
8,

 
m

aj
or

 fa
ci

lit
at

or
 su

pe
rf

am
ily

 d
om

ai
n 

co
nt

ai
ni

ng
 8

; P
PT

1,
 p

al
m

ito
yl

 p
ro

te
in

 th
io

es
te

ra
se

 1
; R

LP
, r

ec
til

in
ea

r p
ro

fil
es

; S
A

P,
 sa

po
si

n;
 T

PP
1,

 tr
ip

ep
tid

yl
 p

ep
tid

as
e 

1.
 

1)
 T

es
tin

g 
of

 sa
po

si
n 

A
 w

as
 n

ot
 re

po
rte

d.
  

R
ef

er
en

ce
s:

 S
ch

ul
tz

 e
t a

l.,
 2

00
4;

 S
iin

to
la

 e
t a

l.,
 2

00
6b

; N
os

ko
va

 e
t a

l.,
 2

01
1;

 K
ou

si
 e

t a
l.,

 2
01

2.
 



Review of the literature 

 

THL — Research 82/2012 43 Molecular Interactions of Neuronal 
Ceroid Lipofuscinosis Protein CLN3 

 

NCLs are rare disorders with estimated collective incidence ranging from 0.6 in 

100,000 to 13.6 in 100,000 live births, with juvenile NCL being the most common 

form of NCL worldwide (Rider and Rider, 1988; Santavuori, 1988; Claussen et al., 

1992; Cardona and Rosati, 1995; Crow et al., 1997; Elleder et al., 1997a; Uvebrant 

and Hagberg, 1997; Taschner et al., 1999; Augestad and Flanders, 2006; Moore et 

al., 2008). Finland is enriched with NCLs, especially those associated with 

mutations in CLN1, CLN3, CLN5, and progressive epilepsy with mental retardation 

(EPMR)-causing mutations in CLN8 (Mitchison et al., 1995; Santavuori et al., 2000; 

Anttonen et al., 2012). 

2.3.1.2 Proteins defective in NCLs 
Genes mutated in NCLs encode proteins that mostly represent two intracellular 

compartments, lysosomes and the ER. Four known NCL proteins, palmitoyl protein 

thioesterase 1 (PPT1), tripeptidyl peptidase 1 (TPP1), CLN5, and cathepsin D are 

soluble lysosomal proteins (reviewed in Kyttala et al., 2006; Schmiedt et al., 2010). 

Remaining known NCL proteins, with the exception of cysteine string protein alpha 

(CSPα), are polytopic integral membrane proteins. CLN3 and MFSD8 localise to 

lysosomal membranes (Siintola et al., 2007) (for CLN3 references, see Chapters 

2.4.2 and 2.4.3) whereas CLN6 and CLN8 mainly reside in the ER (reviewed in 

Kyttala et al., 2006). 

A common feature between PPT1, CLN3 and CLN8 in neurons is their tendency 

to localise to additional vesicular compartments in the cell periphery, which suggests 

that the proteins may have specific functions in excitatory cells (Isosomppi et al., 

1999; Heinonen et al., 2000; Lehtovirta et al., 2001; Ahtiainen et al., 2003; Lonka et 

al., 2004) (for CLN3 references, see Chapter 2.4.3). In addition, CSPα is anchored to 

the surface of synaptic vesicles, among other exocytotic organelles (reviewed in 

Johnson et al., 2010), further emphasizing a potential role of NCL proteins in 

synaptic compartments.  

CSPα, the best characterised NCL-related protein, exhibits chaperone activity 

and plays a pivotal role in the protein quality control machinery required for 

continued synaptic transmission (Johnson et al., 2010; Sharma et al., 2011). Instead, 

the biological roles of the more commonly defective NCL proteins are less well 

characterised. They either lack homology to known proteins or functional domains 

(CLN5 and CLN6), or their homology does not reveal specific action of the protein 

(CLN3, MFSD8 and CLN8). MFSD8 belongs to the major facilitator superfamily of 

transporter proteins, substrates of which include sugars, drugs, inorganic and organic 

cations, and various metabolites (Saier et al., 1999; Siintola et al., 2007). By 

sequence similarity with members of the TLC (TRAM-Lag1-CLN8) family of 

proteins, CLN8 has been suggested to operate in sensing, biosynthesis, and 

trafficking of lipids (Winter and Ponting, 2002). CLN3 will be discussed in more 

detail in Chapter 2.4. Three of the NCL proteins represent lysosomal hydrolases 

with several reported in vitro substrates (PPT1, TPP1 and cathepsin D) (reviewed in 
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Kyttala et al., 2006; Jalanko and Braulke, 2009; and Getty and Pearce, 2011). 

However, their native substrates have not been confirmed and thus, the specific role 

of these NCL proteins are not clear either. PPT1 removes palmitate residues from 

proteins (Camp and Hofmann, 1993), TPP1 catalyses the removal of N-terminal 

tripeptides from the proteins (Sleat et al., 1997; Vines and Warburton, 1998), and 

human cathepsin D is an aspartic protease (Zaidi et al., 2008). Loss of the NCL 

proteins have been shown to affect several intracellular processes (reviewed in 

Kyttala et al., 2006; Jalanko and Braulke, 2009; and Getty and Pearce, 2011). Some 

of these affected pathways are common to different NCL proteins, including 

apoptosis (Cho and Dawson, 2000; Korey and MacDonald, 2003; Guarneri et al., 

2004; Zhang et al., 2006b; Benes et al., 2008; Autefage et al., 2009; Tardy et al., 

2009; Vantaggiato et al., 2009), intracellular trafficking (Ahtiainen et al., 2006; Buff 

et al., 2007; Saja et al., 2010; Cao et al., 2011), lysosomal pH homeostasis 

(Holopainen et al., 2001; Virmani et al., 2005), synaptic functions (Battaglioli et al., 

1993; Mennini et al., 1998; Mennini et al., 2002; Virmani et al., 2005; Ahtiainen et 

al., 2007; Buff et al., 2007; Kielar et al., 2009; Saja et al., 2010), lipid metabolism 

(Vance et al., 1997; Griffin et al., 2002; Kakela et al., 2003; Hermansson et al., 

2005; Ahtiainen et al., 2007; Benes et al., 2008; Jabs et al., 2008; Lyly et al., 2008), 

and oxidative stress (Bertamini et al., 2002; Guarneri et al., 2004). The finding that 

NCL proteins may affect same intracellular pathways suggests that NCL proteins are 

possibly functionally linked. This hypothesis is supported by the analyses indicating 

that NCL genes may act as modifiers of phenotype associated with other NCL genes 

(Kousi, 2011), and that at least some of the NCL proteins interact with each other 

(Vesa et al., 2002; Persaud-Sawin et al., 2007; Lyly et al., 2009). CLN5 and PPT1 

have also been reported to have a common interaction partner outside the NCL 

protein family. The interaction with the F1 complex of ATP synthase may link both 

PPT1 and CLN5 to lipid metabolism (Lyly et al., 2009). 

2.3.2 Clinical and pathological findings in juvenile CLN3 disease 
The first clinical symptom of classic juvenile onset NCL caused by mutations in 

CLN3 (juvenile CLN3 disease or CLN3 disease, classic juvenile; MIM#204200) is 

almost invariably a visual failure, noticed between 4-10 years of age, and leading to 

blindness within a few years (Jarvela et al., 1997; reviewed in Mole et al., 2011).  

Seizures usually appear around the age of 10 years (Jarvela et al., 1997; Aberg et al., 

2000b). With age, the seizure frequency and severity tend to increase. Signs of 

cognitive impairment can be detected at an early stage of the disease (Lamminranta 

et al., 2001). The greatest decline in intelligence as well as motor functions occurs 

between 11 and 15 years of age (Jarvela et al., 1997). Motor disturbances include 

impaired imbalance, rigidity, hypokinesia, stooped posture, and shuffling gate. 

Speech becomes dysarthric and speech difficulties usually accompany motor deficits 

(Jarvela et al., 1997). Magnetic resonance imaging and computed tomography show 
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cerebral and cerebellar atrophy usually after the age of 10-14 years (Raininko et al., 

1990; Autti et al., 1996). The severity of cerebellar atrophy has been shown to 

correlate positively with disturbances in motor functions (Raininko et al., 1990; 

Nardocci et al., 1995; Autti et al., 1996). Juvenile CLN3 disease patients suffer from 

a number of behavioural and psychiatric problems such as aggressiveness, 

depression, sleep problems, hallucinations (Santavuori et al., 1993; Jarvela et al., 

1997; Backman et al., 2005; Adams et al., 2006). Patients may also exhibit cardiac 

dysfunction and hyperandrogenism (Aberg et al., 2002; Ostergaard et al., 2011). 

CLN3 disease is also characterised by vacuolated lymphocytes (reviewed in Haltia, 

2003; and Mole et al., 2005). Juvenile CLN3 disease leads to premature death at 

second or third decade, with the mean age at death being 24 years (Jarvela et al., 

1997).  

At the postmortem examination, juvenile CLN3 disease brains are almost normal 

in their macroscopic appearance but are moderately or even severely reduced in 

weight due to cerebral and cerebellar atrophy (Autti et al., 1997 and references 

therein). There is a mild to moderate loss of neurons in all parts of the affected 

brains. However, the overall degree of neuronal loss varies in different subfields 

(Autti et al., 1997; Haltia et al., 2001; Tyynela et al., 2004). Detailed 

neuropathological analyses have revealed a selective loss of neurons in the cerebral 

cortical layers II and V, cerebellar cortex (especially granule cells), and hippocampal 

formation (especially within CA3 and CA2 subfields) (Braak and Goebel, 1978; 

Braak and Goebel, 1979; reviewed in Haltia, 2003; and Mole et al., 2011). Loss of 

cortical and hippocampal γ-aminobutyric acid (GABA)ergic interneurons is also 

evident (Braak and Goebel, 1978; Braak and Goebel, 1979; Tyynela et al., 2004). 

These changes are accompanied by microglial and astrocyte activation, and loss of 

myelin (Autti et al., 1997; Haltia et al., 2001; Tyynela et al., 2004). The visual 

system shows macular and retinal degeneration, optic atrophy, thinning of the 

vessels and storage accumulation in the peripheral retina (reviewed in Bozorg et al., 

2009; and Mole et al., 2011).  

The storage inclusions are mainly composed of the subunit c of mitochondrial 

ATPase and have mostly the appearance of fingerprint-like deposits in 

ultrastructural analysis using electron microscopy (EM) (Palmer et al., 1992; 

reviewed in Haltia, 2003; and Mole et al., 2005). Degree of neuronal storage also 

varies in different brain areas. However, neuronal loss is not closely related to the 

extent of the storage and the presence of storage material does not necessarily result 

in neurodegeneration. Thus, it is possible that the damage induced by storage may 

not be the main neurodegenerative component in juvenile CLN3 disease underlining 

the influence of the other mechanisms on determining neuronal survival (Autti et al., 

1997; Tyynela et al., 2004; reviewed in Mole et al., 2011). 

Unlike other NCLs, juvenile CLN3 disease patients also display patterns of an 

autoimmune response evidenced by the presence of circulating autoantibodies 

against glutamic acid decarboxylase (GAD65), α-fetoprotein (AFP) and other, so far 
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unidentified antigens present in brain tissue (Chattopadhyay et al., 2002; Lim et al., 

2006; Castaneda and Pearce, 2008). 

2.3.3 Phenotypes and pathological findings in juvenile CLN3 disease 
mouse models 

No naturally occurring mouse (or any animal) models exist for juvenile CLN3 

disease and therefore, artificial murine models have been generated (Table 3). To 

date, four different mouse models for CLN3 disease have been generated, including  

Cln3Δex1-6 (Cln3-/-) knock-out mouse, Cln3Δex7-8 Katz mouse, Cln3Δex7-8 Cotman mouse, 

and Cln3LacZ β-galactosidase reporter model, each representing different gene 

targeting strategies. While the first CLN3 disease mouse model, Cln3Δex1-6 (Cln3-/-) 

mouse, was created by replacing the start codon and first six exons of Cln3 with a  

neo cassette, resulting in a null allele (Cln3-/-) (Mitchison et al., 1999), two other 

CLN3 disease mouse models replicate the most common disease-causing CLN3 
mutation (Katz et al., 1999; Cotman et al., 2002). In the knock-out model of Katz et 

al., Cln3Δex7-8 Katz mouse, Cln3 was replaced with a targeting vector in which most of 

exon 7, the entire intron 7 and exon 8, and part of intron 8 of Cln3 were replaced 

with a neo cassette (Katz et al., 1999). Cotman et al. (2002) generated a knock-in 

mouse in which exons 7 and 8 of Cln3 were entirely removed without leaving the 

neo cassette in a final mutant allele. In addition, Eliason et al. (2007) have created a 

mouse model that harbors a bacterial β-galactosidase reporter gene (lacZ) inserted in 

place of exons 1-8 of Cln3 and transcribed by native Cln3 promoter. 

All CLN3 disease mouse models recapitulate the accumulation of 

autofluorescent storage material, neurodegeneration, and neurological defects, 

although the age of onset and the severity of the changes vary, with Cln3Δex7-8 Cotman 

mouse model exhibiting a more aggressive phenotype than the other models (Table 

3). Visual defects are not that apparent. Cln3Δex7-8 Katz mouse is the only CLN3 

disease mouse model that has been reported to exhibit altered retinal function 

(Seigel et al., 2002; Katz et al., 2008; Osorio et al., 2009). Interestingly, examination 

of the optic nerve of Cln3-/- mice, the most extensively studied mouse model of 

CLN3 disease, revealed other more prominent deficits, including reduction in optic 

nerve axonal density and myelination, hypertrophy of individual axons, impaired 

fast axonal transport of amino acids, and decreased conduction velocity of action 

potentials (Seigel et al., 2002; Sappington et al., 2003; Weimer et al., 2006).  

Furthermore, the stereological analysis revealed that the thalamic nuclei receiving 

input from the retina and relaying it to visual cortex displayed selective cell loss 

(Weimer et al., 2006). Based on these findings, it was suggested that visual 

deterioration in juvenile CLN3 disease may result from pathological events 

occurring outside of the retina (Weimer et al., 2006).  

In addition, autoantibodies and loss of GABAergic interneurons, observed in 

CLN3 disease patients, have also been detected in Cln3-deficient mice (Mitchison et 
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al., 1999; Chattopadhyay et al., 2002; Pontikis et al., 2004; Pontikis et al., 2005; 

Castaneda and Pearce, 2008). However, just like the appearance of visual defects, 

the significant loss of GABAergic interneurons does not seem to be a unifying 

feature among the CLN3 disease mouse models (Mitchison et al., 1999; Pontikis et 

al., 2004; Pontikis et al., 2005). Instead, early glial activation has been observed in 

two analysed models (Pontikis et al., 2004; Pontikis et al., 2005; Weimer et al., 

2009). Detailed studies on the early onset gliosis in the cerebellum of Cln3-/- mice 

revealed that activated cerebellar Bergmann glias were clustered adjacent to regions 

devoid of Purkinje cells. Surviving Purkinje cells exhibited defective neuritogenesis, 

seen as dendritic mis-orientation and altered dendritic spine density, and were 

defective in migration and/or maturation (Weimer et al., 2009). Interestingly, these 

changes were shown to precede deficits in motor coordination and balance (Kovacs 

et al., 2006). This suggests that an insult to cerebellar Purkinje cells is the primordial 

event resulting in decline in motor skills in juvenile CLN3 disease.
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2.4 CLN3 

2.4.1 CLN3 gene and disease mutations 
Most cases of juvenile onset NCL are caused by mutations in CLN3 which maps to 

the chromosomal region 16p11.2-12.1 spanning 15 kilobases (kb) with its 15 exons 

and 14 introns (Consortium, 1995; Mitchison et al., 1997a). The open reading frame 

of CLN3 is 1314 bp in length (Consortium, 1995). Alu elements are overrepresented 

in a CLN3 locus, a phenomenon suggested to be the underlying cause for the 

existence of numerous deletion and insertion mutations in the gene (Mitchison et al., 

1997a).  

To date, 59 disease-causing mutations in CLN3 have been identified, with the 

majority of the mutations affecting residues of the second and third lumenal loop of 

the polytopic CLN3 protein (Kousi et al., 2012) (Figure 7). This suggests that these 

domains represent functional hotspot in juvenile CLN3 disease. The most common 

mutation in CLN3 is 1.02-kb deletion (c.462-677del, g.6060-7025del), also referred 

to as CLN3Δex7-8. It is present on 80 - 85% of disease chromosomes and affects 

approximately 300 families (Consortium, 1995; Munroe et al., 1997a and NCL 

Resource). The removal of exons 7 and 8 due to the 1.02-kb deletion results in a 

frameshift and a truncated protein consisting of the first 153 residues of the protein, 

followed by 28 novel amino acids before the stop codon (Consortium, 1995). Most 

of the remaining juvenile CLN3 disease cases are compound heterozygous for the 

1.02-kb deletion and another mutation each accounting only a few families 

(Consortium, 1995; Munroe et al., 1997a, and NCL Resource). In Finland, most of 

the compound heterozygous patients bear a 2.8-kb deletion mutation found uniquely 

in Finland (Munroe et al., 1997b and Karhu, V. et al., unpublished data). 

Controversial evidence exists for the presence of the 1.02-kb deletion protein 

product in mutated cells (Kitzmuller et al., 2007; Chan et al., 2008; Sarpong et al., 

2009). It has even been suggested that, due to alternative splicing of messenger 

ribonucleic acid (mRNA), the 1.02-kb deletion mutant may also encode a CLN3 

mutant protein that contains a portion of the C-terminus (Cotman et al., 2002; 

Fossale et al., 2004). In any case, the 1.02-kb deletion as well as other mutations 

resulting in severely truncated protein may lead to loss of CLN3 function in a 

correct intracellular compartment due to a lack of a full collection of intracellular 

targeting signals (see Chapter 2.4.3) and thus retention of the protein in the ER 

(Jarvela et al., 1999; Kitzmuller et al., 2008). A few mutations that affect the 

splicing of mRNA may result in mis-spliced transcripts encoding a protein with 

partial function (Munroe et al., 1997a; Munroe et al., 1997b). All identified missense 

mutations affect residues conserved between species. Most of the missense 

mutations, if not all, allow the protein to traffic to lysosomes but may interfere with 

the conformation and/or protein interactions and functions (Zhong et al., 1998; 

Jarvela et al., 1999; Golabek et al., 2000; Haskell et al., 2000; Golabek et al., 2001; 



Review of the literature 

 

THL — Research 82/2012 50 Molecular Interactions of Neuronal 
Ceroid Lipofuscinosis Protein CLN3 

 

Persaud-Sawin et al., 2002; Gachet et al., 2005; Hobert and Dawson, 2007; 

Kitzmuller et al., 2008; Haines et al., 2009). 

CLN3 mutations predicted to give rise to severely truncated proteins or some 

missense mutations presumably affecting critical residues in the protein cause 

almost inclusively a classic juvenile NCL with highly concordant onset of visual 

failure (Jarvela et al., 1997; Munroe et al., 1997b; Kwon et al., 2005). However, 

inter- as well as intrafamilial variation in the severity of other symptoms has been 

observed indicating that environmental factors and/or modifying genes may 

influence the clinical phenotype (Jarvela et al., 1997). The clinical variation has been 

reported to be more prominent within compound heterozygote patients, and a 

proportion of these individuals display an atypical disease course associated with 

visual impairment but less severe mental and motor dysfunctions, with some cases 

having only visual failure (Jarvela et al., 1997; Munroe et al., 1997a; Wisniewski et 

al., 1997; Wisniewski et al., 1998; Lauronen et al., 1999). Furthermore, it has been 

suggested that undiscovered missense mutations may associate with a benign 

phenotype and thus, may not be diagnosed with juvenile CLN3 disease (Jarvela et 

al., 1997; Munroe et al., 1997a). A recent study, however, suggested that there are 

no differences in the behavioural phenotype between individuals homozygous or 

heterozygous for the major CLN3 mutation (Adams et al., 2010). 

2.4.2 Structure and post-translational modifications of CLN3 
CLN3 encodes a 438-amino acid protein with a predicted molecular weigh of 43 

kilodaltons (kDa) (Consortium, 1995). CLN3 has no homology with other proteins 

or functional domains, except a distant similarity with equilibrative nucleoside 

transporter family SLC29 and fatty acid desaturases (Baldwin et al., 2004; Narayan 

et al., 2006b). Nevertheless, CLN3 is highly conserved across species indicating that 

the protein has a fundamental role in cells (Taschner et al., 1997; Muzaffar and 

Pearce, 2008; Tuxworth et al., 2009).  

The membrane topology of the human CLN3 has been studied extensively both 

by experimental (Ezaki et al., 2003; Mao et al., 2003a; Mao et al., 2003b; Kyttala et 

al., 2004) and computational methods (Janes et al., 1996; Mitchison et al., 1997b; 

Mao et al., 2003a; Nugent et al., 2008). Consensus is that CLN3 is a type III 

transmembrane protein, since it contains multiple membrane spanning domains, and 

its carboxy terminus faces the cytoplasm. However, predictions differ in the exact 

number of transmembrane segments (4-10) as well as in the positioning of the amino 

terminus. In vivo data favours the cytoplasmic positioning of the N-terminus (Ezaki 

et al., 2003; Kyttala et al., 2004). When this is combined with the experimental data 

on the other hydrophilic domains of CLN3 (Mao et al., 2003a; Kyttala et al., 2004) 

and with the most recent computational prediction analysis (Nugent et al., 2008), the 

emerging topology model of CLN3 supports a structure with six transmembrane 

segments, cytoplasmic N- and C-termini, one large cytoplasmic loop domain, and 
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three large lumenal loops, one of which putatively contains an amphipathic helix 

(Nugent et al., 2008). This model (Figure 7) is generally considered a valid 

topology model until a CLN3 crystal structure is available. The prediction that the 

yeast orthologues of CLN3 might produce different topologies (Nugent et al., 2008) 

remains to be confirmed experimentally. This is important considering that yeast 

models have widely been used to determine CLN3 functions. 

 

 

Figure 7. A schematic model for the topology of human CLN3 modified from 
Kyttälä et al. (2004) and Nugent et al. (2008). Experimentally determined positioning of 
lumenal and cytoplasmic loops, glycosylation sites (antennas), and lysosomal targeting 
signals and sorting motifs (LI, M(X9)G, CQLS) are indicated. Proposed amphipathic helix 
(amino acids 319-336) and amino acid residues at the domain interfaces are also 
presented. Two disease-associated mutations referred to in the text, the classical 
CLN3∆ex7-8 (c.462-677del), and the protracted disease causing CLN3E295K 
(c.883G>A), affect the second lumenal loop and the fifth transmembrane segment of the 
protein, respectively (stars). C-terminus may adopt a loop structure through prenylation 
on the CQLS motif, and subsequent attachment to the membrane. 
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CLN3 has been suggested to undergo several posttranslational modifications, 

including phosphorylation, glycosylation, myristoylation and prenylation. Based on 

the latest sequence analysis by Nugent et al. (2008), CLN3 is predicted to contain 

nine potential phosphorylation sites. However, to date, the only experimental 

evidence for the phosphorylation of CLN3 has been obtained in a study showing that 

a radiolabeled phosphate could be incorporated into the green fluorescence protein 

(GFP)-tagged CLN3 and that the labelling could be removed by alkaline 

phosphatase (Michalewski et al., 1999). Same study suggested that several kinases 

and phosphatases affect the level of CLN3 phosphorylation. Further studies are 

needed to map the specific phosphorylation sites in CLN3 and their functional 

importance for the protein. A study where the effects of CLN3 mutants on cell 

growth rates were analysed showed that the phosphorylation of CLN3 is at least not 

associated with the apoptotic functions of the protein (Persaud-Sawin et al., 2002). 

Several studies have indicated that CLN3 is a glycosylated protein (Figure 7) 

and that the level of CLN3 glycosylation varies in different cell types or tissues 

(Jarvela et al., 1998; Golabek et al., 1999; Ezaki et al., 2003; Mao et al., 2003a; 

Storch et al., 2007). There are four potential N-glycosylation sites (residues 49, 71, 

85, 310), two putative O-glycosylation sites (residues 80 and 256), and two potential 

glycosaminoglycan sites (residues 162 and 186) within CLN3 (Consortium, 1995). 

The N-glycosylation sites at asparagine residues 71 and 85 have been validated 

experimentally (Storch et al., 2007). In addition, in vitro studies by Mao et al. 

(2003a) suggested that asparagine residue 310 is also N-glycosylated but this was 

not supported by in vivo experiments of Storch et al. (2007). N-glycosylation is not 

required for the delivery of CLN3 to lysosomal compartments (Kida et al., 1999; 

Storch et al., 2007) but might be important for certain functional activities (Persaud-

Sawin et al., 2002). Interestingly, the Saccharomyces cerevisiae homologue of 

CLN3 possibly uses glycosylation for its relocalisation under variable pH conditions  

(Wolfe et al., 2011) (see Chapter 2.4.4.2). 

CLN3 sequence was predicted to contain lipid modification sites for N-terminal 

myristoylation (2GGCAGS7) and, at its C-terminal tail, a CAAX motif for 

prenylation (435CQLS438) (Consortium, 1995; Taschner et al., 1997; Jarvela et al., 

1998). No direct experimental evidence exists for the myristoylation. However, the 

N-terminus is resistant to the Edman degradation, which indicates the presence of a 

post-translational modification at the amino terminus (Ezaki et al., 2003). 

Furthermore, CLN3 has been shown to undergo prenylation in vitro (Pullarkat and 

Morris, 1997; Kaczmarski et al., 1999) and in vivo (Storch et al., 2007), which 

creates an additional, C-terminal loop into the protein (Figure 7). The amino acid 

composition of the CAAX motif in CLN3 suggests that the prenylation of CLN3 

involves rather farnesylation than geranylgeranylation (Pullarkat and Morris, 1997). 

Prenylation affects the trafficking of CLN3 along the endosomal/lysosomal 

compartments (Storch et al., 2007) (see Chapter 2.4.3). 
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2.4.3 Tissue expression and intracellular localisation of CLN3 

CLN3 is transcribed throughout the body, with placenta being the most prominent 

site of CLN3 mRNA expression (Consortium, 1995; Chattopadhyay and Pearce, 

2000; Su et al., 2004). Unfortunately, low endogenous protein levels and lack of 

reliable antibodies have challenged the determination of the localisation of CLN3 

protein. Margraf et al. (1999) and Ezaki et al. (2003) have analysed the expression 

of the protein in brain and in a few extraneural tissues using antibodies against the 

N-terminus of CLN3. Although it seems that also at protein level both mouse and 

human CLN3 are expressed in several tissues, antibodies used in the studies by 

Margraf and colleagues and Ezaki and colleagues gave conflicting results on the 

tissue specific expression levels of CLN3. A more comprehensive analysis on CLN3 

tissue localisation has been obtained utilising CLN3-deficient reporter mice that 

express β-galactosidase under the native Cln3 promoter (Eliason et al., 2007; Stein 

et al., 2010; Ding et al., 2011). The β-galactosidase reporter gene was translated in a 

wide variety of tissues confirming that CLN3 is ubiquitously expressed (Stein et al., 

2010; Ding et al., 2011).  

Several studies indicate that compared to extraneural tissues, CLN3 expression in 

brain is relatively low (Consortium, 1995; Chattopadhyay and Pearce, 2000; Cotman 

et al., 2002; Ezaki et al., 2003; Stein et al., 2010). This suggests that the neural 

expression of CLN3 is tightly regulated. However, detailed information on CLN3 

expression in brain is partly inconsistent. Nevertheless, hippocampus (especially the 

granular cells of the dentate gyrus), cortex, and cerebellum (especially the granular 

cell layer and Purkinje cells) have frequently been reported to express CLN3 (Pane 

et al., 1999; Chattopadhyay and Pearce, 2000; Luiro et al., 2001; Cotman et al., 

2002; Eliason et al., 2007; Ding et al., 2011). Furthermore, the inner and the outer 

nuclear layers of retina have been reported to express notable amounts of CLN3 

(Ding et al., 2011). In the CLN3-positive areas of the brain, the protein is 

predominantly expressed in neurons, although not all neurons are expressing the 

protein. 

Most of the studies on intracellular localisation of CLN3 suggest that the protein 

primarily resides in LEs/lysosomes (Fossale et al., 2004; Storch et al., 2004; 

reviewed in Phillips et al., 2005; Storch et al., 2007; Tuxworth et al., 2009). The 

transport of CLN3 to lysosomes occurs slowly (Storch et al., 2007), possibly via the 

plasma membrane (Mao et al., 2003b; Storch et al., 2007), and requires at least three 

different sorting signals; a dileucine signal (LI) preceded by an acidic patch in the 

large cytoplasmic loop (Kyttala et al., 2004; Storch et al., 2004; Kyttala et al., 2005), 

a stretch of methionine and glycine separated by nine amino acid residues [M(X)9G 

motif] in the C-terminal domain (Kyttala et al., 2004; Kyttala et al., 2005), and the 

prenylation signal, a CAAX box motif (435CQLS438), also located in the carboxy 

terminus of CLN3 (Storch et al., 2007) (Figure 7). Although Storch et al. (2004) 

failed to demonstrate interaction between CLN3 and the adaptor proteins AP-1 and 
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AP-3, an independent study by Kyttälä et al. (2005) revealed that these adaptor 
proteins do recognise the dileucine signal in CLN3 and mediate the transport of the 
protein to lysosomal compartments. Molecules responsible for the recognition of the 
M(X)9G motif and the prenyl moiety are currently unknown. Although either the LI 
signal or the M(X)9G motif on their own can mediate the transport of CLN3 to 
lysosomes, both are required for optimal lysosomal delivery (Kyttala et al., 2004; 
Storch et al., 2004). However, the prenyl moiety executes its function differently. It 
is not essential for the lysosomal transport of CLN3 (Haskell et al., 2000; Storch et 
al., 2007) but rather enhances the lysosomal sorting of the protein in early 
endosomal compartments (Storch et al., 2007). 

In addition to LEs and lysosomes, CLN3 has been suggested to localise to 
several other intracellular compartments including the nucleus, ER, Golgi, 
cytoplasm, mitochondria, EEs, recycling endosomes, lipid rafts, and plasma 
membrane (reviewed in Phillips et al., 2005). Since lysosomal transport of CLN3 
extend to the EEs and possibly the cell surface, it is possible that these 
compartments may indeed contain some of the functional CLN3. Whether CLN3 is 
associated with and executes its function in the rest of the above-mentioned 
compartments remains to be confirmed. It is possible that some of the compartments 
suggested to contain CLN3, may represent false positives due to poor antibody 
specificity and protein over-expression. In addition, utilisation of terminal epitope 
tags has been reported to interfere with the normal targeting of CLN3 (Haskell et al., 
1999; Kyttala et al., 2004).   

In neuronal cells, CLN3 has also been localised to LEs/lysosomes, which in 
neurons are mostly retained in the cell soma (Jarvela et al., 1999; Luiro et al., 2001; 
Fossale et al., 2004; Kyttala et al., 2004; Storch et al., 2007). However, a substantial 
fraction of CLN3 is targeted to neuronal extensions and synaptosomes where the 
protein has been found to reside in EEs, presynaptic vesicles, and in so far 
unidentified vesicles (Jarvela et al., 1999; Haskell et al., 2000; Luiro et al., 2001; 
Kyttala et al., 2004; Storch et al., 2007). 

2.4.4 Intracellular processes affected by CLN3 and its orthologues 
Evolutionary conservation of CLN3 has enabled its functional analysis in several 
model organisms. In addition to numerous studies in mammals, the consequences of 
mutations or altered expression levels of CLN3 have been dissected in unicellular 
species and invertebrate animal models. Human CLN3 is able to complement 
functions of its orthologues, which further indicates the functional conservation 
among CLN3 orthologues (Pearce and Sherman, 1998; Kim et al., 2003; Gachet et 
al., 2005). During the past 16 years, CLN3 has been reported to associate with 
numerous intracellular processes, although some of them are likely secondary and 
may not be related to CLN3 directly. In addition to this chapter, CLN3-associated 
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processes will be further discussed in the context of the protein interactions of CLN3 

(Chapter 2.4.5).  

2.4.4.1 Studies on CLN3 in mammals 
The observation that the mitochondrial ATP synthase subunit c accumulates in the 

NCL disease has prompted investigators to analyse the possible role of CLN3 in 

autophagy, a pathway that contributes to mitochondrial turnover. Indeed, CLN3 has 

been found to associate with autophagosomal membranes and the accumulation of 

subunit c protein has been detected in both autophagic vacuoles and lysosomes 

(Fossale et al., 2004; Cao et al., 2006). Analyses performed on Cln3-deficient mice, 

CLN3-silenced neuroblastoma cells, and juvenile CLN3 disease patient samples 

have further showed that loss of functional CLN3 impairs the maturation of 

autophagosomes but also activates autophagy, which may be due to prosurvival 

feedback responses of affected cells. Due to smaller size and trafficking defects of 

autophagic vacuoles in CLN3-deficient cells, it has been suggested that CLN3 may 

function in the trafficking of autophagic vacuoles to the perinuclear region for the 

fusion with LEs/lysosomes (Cao et al., 2006; Chang et al., 2011). In addition, 

abnormalities in intracellular trafficking of several other intracellular 

compartments have been associated with CLN3-deficiency. These include impaired 

exit of mannose 6-phosphate receptor from TGN, demonstrated in CLN3-silenced 

human cervical tumor cells (HeLa cells) (Metcalf et al., 2008), reduced fast axonal 

transport in optic nerves of Cln3-/- mice (Weimer et al., 2006), altered localisation of 

LEs/lysosomes, and defects in fluid-phase endocytosis in cerebellar neuronal 

precursor cells of Cln3Δex7-8 Cotman mice  (Fossale et al., 2004; Cao et al., 2011). The 

role of CLN3 in intracellular trafficking was also studied in this thesis work.   

CLN3 also affects other properties of lysosomal compartments. Studies in patient 

fibroblasts and human cell lines have shown that alterations in CLN3 expression 

levels result in changes in lysosomal pH and size (Golabek et al., 2000; Holopainen 

et al., 2001; Kitzmuller et al., 2008). In addition, several reports indicate that the 

amount or activity/processing of lysosomal proteins, including cathepsins and 

TPP1, deficient in congenital and late infantile NCL, respectively (Sleat et al., 1997; 

Siintola et al., 2006b), is altered in the brains of patients and juvenile CLN3 disease 

mouse models, and in CLN3-silenced human cell lines (Prasad and Pullarkat, 1996; 

Sleat et al., 1998; Junaid and Pullarkat, 1999; Mitchison et al., 1999; Golabek et al., 

2000; Fossale et al., 2004; Eliason et al., 2007; Metcalf et al., 2008). Lysosomes 

from patient lymphoblasts also exhibit decreased lysosomal import of arginine, 

which together with subtle changes in mitochondrial arginine metabolism and 

plasma membrane arginine uptake in  Cln3-/- mice suggest that loss of CLN3 may 

result in multiple disturbances in cellular arginine metabolism (Ramirez-

Montealegre and Pearce, 2005; Chan et al., 2009). 

Several studies have indicated that loss of CLN3 affects communication between 

neurons. GAD65 is an enzyme that converts the excitatory neurotransmitter 
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glutamate to the inhibitory neurotransmitter GABA. Brains of Cln3-/- mice have 

decreased activity of GAD65, due to the inhibition of this enzyme by the 

autoantibody. This results in early-onset elevated presynaptic levels of glutamate 

and decreased production of GABA in the brains of affected mice (Chattopadhyay et 

al., 2002; Pears et al., 2005). These alterations have been suggested (Chattopadhyay 

et al., 2002) to contribute to loss of GABAergic neurons observed in the patients 

(Braak and Goebel, 1978; Braak and Goebel, 1979; Tyynela et al., 2004) and Cln3-/- 

mice (Mitchison et al., 1999; Pontikis et al., 2004). Changes have also been 

observed in the functions of glutamaergic receptors. Cerebellar granule cells of 

Cln3Δex7-8 Cotman and Cln3-/- mice show increased sensitivity to 2-amino-3-(5-methyl-

3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA) and/or N-Methyl-D-aspartic acid 

(NMDA)-type glutamate receptor-mediated excitotoxicity (Kovacs et al., 2006; 

Kovacs and Pearce, 2008; Finn et al., 2011; Kovacs et al., 2011). In addition, an 

independent analysis performed in Cln3Δex7-8 Cotman mice revealed changes in the 

levels of accessible receptor binding sites of glutamergic and cholinergic receptors 

(Herrmann et al., 2008). Juvenile CLN3 disease patients also show downregulation 

of dopamine transporters (Ruottinen et al., 1997; Aberg et al., 2000a) and dopamine 

receptors (Rinne et al., 2002). Furthermore, Cln3-/- mice exhibit alterations in 

dopamine catabolism (Weimer et al., 2007). Therefore, these findings suggest that 

CLN3-deficiency affects the regulation of components involved in 
neurotransmission, although the underlying mechanisms are as yet elusive.  

In addition to the accumulation of mitochondrial protein as a component of the 

storage material in juvenile CLN3 disease, numerous other findings have evidenced 

the connection between the lack of CLN3 and mitochondrial dysfunction. These 

include changes in the size and morphology of mitochondria in the neurons of Cln3 

mouse models (Fossale et al., 2004; Luiro et al., 2006), dysfunction of mitochondrial 

enzymes demonstrated by functional assays in patient fibroblasts, mitochondrial 

fractions isolated from patients and Cln3 knock-out mice (Majander et al., 1995; Das 

and Kohlschutter, 1996; Dawson et al., 1996; Luiro et al., 2006), altered levels of 

high-energy phosphate compounds in patient fibroblasts and cerebellar precursor 

cells of Cln3Δex7-8 mice (Das et al., 2001; Fossale et al., 2004). 

Integrity of the apoptotic pathway, lipid metabolism, and oxidative 
homeostasis in CLN3 deficiency has also been questioned. CLN3 has been 

suggested to exhibit anti-apoptotic activities due to the presence of apoptotic 

neuronal cells in juvenile CLN3 disease brain (Lane et al., 1996) and the ability of 

CLN3 to suppress apoptosis in cultured cells (Puranam et al., 1999; Narayan et al., 

2006a). The view that CLN3 is also involved in lipid metabolism emerged from the 

studies showing the CLN3 expression correlates with palmitoyl-protein Δ9-

desaturase activity (Narayan et al., 2006b) and synthesis of 

bis(monoacylglyceryl)phosphate (BMP; also termed lysobisphosphatidic acid, 

LBPA) (Hobert and Dawson, 2007; Narayan et al., 2008). Finally, altered levels of 

pro- and antioxidant molecules and increased protein oxidation in the brains of Cln3-/- 
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and Cln3Δex7-8 Cotman mice, together with reduced survival of cerebellar precursor 

cells prepared from Cln3Δex7-8 mice from oxidative stress indicate that the oxidative 

stress response pathway may be defective due to loss of CLN3 (Benedict et al., 

2007; Weimer et al., 2007; Herrmann et al., 2008). 

2.4.4.2 Studies on CLN3 in yeasts 
Both the budding yeast Saccharomyces cerevisiae and the fission yeast 

Schizosaccharomyces pombe have been utilised to analyse the function of CLN3 in 

simple unicellular organisms (Pearce and Sherman, 1998; Gachet et al., 2005). The 

yeast homologue of CLN3, termed Btn1p, is 39% and 30%  identical, and 59% and 

48% similar in S. cerevisiae and S. pombe, respectively (Mitchison et al., 1997b; 

Gachet et al., 2005). Like the human counterpart, the yeast homologues of CLN3 

have been suggested to localise to more than one intracellular compartment. Btn1p in 

both yeast organisms was originally reported to localise to the vacuole, the analogous 

organelle to the lysosome (Croopnick et al., 1998; Gachet et al., 2005). In S. pombe, 

the protein was additionally localised to smaller, prevacuolar compartments that were 

later suggested to represent the Golgi compartment (Gachet et al., 2005; Codlin and 

Mole, 2009). In fact, it has subsequently been argued that Btn1p in both yeasts is 

predominantly located within the Golgi, but in overexpression, may escape to 

vacuolar compartments (Codlin and Mole, 2009; Kama et al., 2011). Nevertheless, 

both S. pombe and S. cerevisiae Btn1p show conditional intracellular localisation. In 

S. pombe, the protein is enriched in the endomembrane structures near the cell poles 

or septum at high temperature growth conditions (Codlin et al., 2008b). The S. 

cerevisiae homologue is re-localised to undefined punctuate spots in response to 

changes in extracellular pH (Wolfe et al., 2011).  

The budding yeast deleted for the CLN3 yeast orthologue BTN1 (btn1Δ strain) 

manifests changes in vacuolar pH, amino acid homeostasis, nitric oxide 
production, and phospholipid distribution. The btn1Δ strain has a decreased 

vacuolar pH at early growth that continues to rise above normal at later growth points 

(Pearce et al., 1999a; Padilla-Lopez and Pearce, 2006). Concurrently, coupling of 

proton transport and ATPase activities of the vacuolar ATPase (vATPase), a major 

contributor to the acidic pH of the vacuole, is altered (Padilla-Lopez and Pearce, 

2006) and the activity of the plasma membrane H+ ATPase is increased in btn1Δ 

(Pearce et al., 1999a; Pearce et al., 1999b). Both processes have been suggested to act 

in order to compensate the imbalance in vacuolar pH homeostasis. Altered vacuolar 

pH has also been reported to underlie the transport defect of arginine into btn1Δ 

vacuoles (Kim et al., 2003). However, there is a decrease in both vacuolar and 

cytosolic arginine (and lysine) levels in btn1Δ cells (Kim et al., 2003). The findings 

that btn1Δ can grow in the absence of arginine and that high intracellular levels of 

arginine are, due to unknown reasons, toxic to btn1Δ strain, led to the suggestion that 

arginine is deliberately kept low in cells lacking Btn1 (Vitiello et al., 2007). Since 

arginine serves as the substrate for nitric oxide synthesis, this likely explains why 
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btn1Δ cells exhibit limited synthesis of nitric oxide and suppression of nitric oxide-

dependent signalling pathways (Osorio et al., 2007). In addition, phospholipid levels 

and their subcellular distribution have been reported to be dysregulated in S. 

cerevisiae due to loss of Btn1p (Padilla-Lopez et al., 2012).  

Finally, the btn1Δ strain upregulates BTN2 (Pearce et al., 1999a). The protein 

product of BTN2, S. cerevisiae Btn2p, has been implicated in intracellular 
trafficking. Btn2p has been reported to affect the cell surface localisation of 

regulators of arginine uptake and salt tolerance (Chattopadhyay and Pearce, 2002; 

Kim et al., 2005), and to interact with components specifically involved in the 

retrieval of Golgi-associated vesicular targeting protein, Yif1p (Chattopadhyay et 

al., 2003; Kama et al., 2007). In fact, it was recently reported that also Btn1p works 

on retrograde late endosome-to-Golgi transport of Yif1p, but probably by different 

mechanism than Btn2p. While Btn2p localises to vacuoles and associates there with 

retrieval components, Golgi-localised Btn1p has been shown to execute its function 

by regulating SNARE phosphorylation and assembly, most likely in Golgi complex 

(Kama et al., 2007; Kama et al., 2011). 

Deletion of Btn1p-coding gene in S. pombe has also pleiotropic effects. Btn1p-

deficient fission yeast has larger and less acidic vacuoles than the wild type yeast 

(Gachet et al., 2005). The vacuole size strongly correlates with changes in Btn1p 

expression but is affected indirectly by Btn1p via modulation of the vacuolar pH 

(Gachet et al., 2005; Kitzmuller et al., 2008). S. pombe btn1Δ show also aberrant cell-
wall structure and delayed cytokinesis under normal growth conditions (Gachet et al., 

2005; Codlin et al., 2008a). Changes in vacuole pH may also explain some of the 

observed defects in cell-wall (Codlin et al., 2008a) but not in the cytokinesis (Gachet et 

al., 2005). This suggests that Btn1p impacts cytokinesis apart from its role in vacuolar 

pH homeostasis. The defect in cytokinesis is more severe at 37°C. After prolonged 

growth at high temperature, S. pombe btn1Δ cells lose their ability for polarised growth 

and eventually become lysed (Codlin et al., 2008b). This has been shown to be due to 

defects in the processes required for the distribution of sterol-rich domains (lipid 
rafts) to cell poles (Codlin et al., 2008b). In addition, Btn1p-deficient cells exhibit 

altered Golgi morphology and defective sorting of the vacuolar hydrolase 
carboxypeptidase Y (Cpy1p) in part due to delayed trafficking of its sorting receptor 

Vps10p through ER and the Golgi compartment (Codlin and Mole, 2009).  

2.4.4.3 Studies on CLN3 in Drosophila melanogaster and 
Caenorhabditis elegans 

Two small invertebrate animal models, Drosophila melanogaster and 

Caenorhabditis elegans, have been utilised in CLN3 research (de Voer et al., 2005; 

Tuxworth et al., 2009; Tuxworth et al., 2011). Drosophila homologue of CLN3, 

expressed in human embryonic kidney cells, has been reported to localise to late 

endosomal compartments, with a fraction of the protein also appearing on the 

plasma membrane and Rab11-positive recycling endosomes (Tuxworth et al., 2009). 
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A transgenic fly harbouring a null mutation in CLN3 exhibits no obvious external 

phenotype, or accumulation of autofluorescent material (Tuxworth et al., 2011). 

Instead, over-expression of CLN3 has strong phenotypic consequences (Tuxworth et 

al., 2009; Tuxworth et al., 2011). Expression of CLN3 in the eye causes 

degeneration while ubiquitous expression leads to semi-lethality. Escaping adults 

exhibit several morphological changes that resemble those of Notch loss-of-function 

or JNK gain-of-function phenotypes. Not surprisingly, genetic interactions between 

CLN3 and the Notch or JNK signalling pathways were subsequently confirmed 

(Tuxworth et al., 2009). Furthermore, CLN3 over-expression has been demonstrated 

to affect the expression of Notch and JNK target genes (Tuxworth et al., 2009). The 

two signalling pathways are functionally connected and therefore, Tuxworth et al. 

suggested that increased expression of CLN3 causes inhibition of Notch signalling, 

possibly via activation of the JNK signalling pathway (Tuxworth et al., 2009). Based 

on the finding that Notch signalling appears unaffected downstream of Notch 

cleavage, it was also suggested that increased levels of CLN3 most likely impair the 

processing or cleavage of the Notch receptor itself (Tuxworth et al., 2009). CLN3-

expressing fly has also been used to systematically screen for genes that modify 

CLN3-dependent degenerative phenotypes in the eye and wing, to further recognise 

intracellular pathways and processes possibly involving CLN3. The analysis initially 

involved genes that changed the phenotype when their gene dosage was reduced 

(Tuxworth et al., 2009) and was later expanded to genes that modified phenotypes 

when co-expressed with CLN3 (Tuxworth et al., 2011). Several intracellular 

processes or pathways emerged from the screens, including stress response 
signalling (Tuxworth et al., 2011) and regulation of mRNA translation and 
localisation (Tuxworth et al., 2009; Tuxworth et al., 2011). Detailed investigations 

revealed that among different environmental stress pathways, especially the 

oxidative stress response is compromised due to changes in CLN3 expression 

(Tuxworth et al., 2011). Consistently, CLN3 null flies were found to be 

hypersensitive to oxidative stress and to accumulate reactive oxygen species. Even 

so, CLN3 was not found to be a direct antioxidant effector, as its expression levels 

kept constant during exposure to stress conditions (Tuxworth et al., 2011). Further 

analysis downstream the oxidative stress response pathway should clarify the 

potential role of CLN3 in oxidative stress. 

C. elegans has three CLN3 homologues, designated cln-3.1, cln-3.2, and cln-3.3. 

They encode proteins that show considerable homology across their complete amino 

acid sequences (De Voer et al., 2001; Mitchell et al., 2001). Thorough examination 

of each single cln-3 deletion mutant or double and triple cln-3 mutants revealed 

decreased life span or brood size but no significant alterations in behaviour, 

morphology, neuronal integrity, or lysosomal staining have been noticed. In 

addition, cln-3 mutant worms do not exhibit the accumulation of autofluorescent 

storage material (de Voer et al., 2005; Phillips et al., 2006). 
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2.4.5 Protein interactions of CLN3 

The first interaction of CLN3 was reported in 2002, 7 years after gene identification 

(Vesa et al., 2002). With time, several other binding partners of CLN3 have been 

identified including those discovered in this thesis work. A summary of CLN3 

interactions, discussed below, is presented in Table 4. 

Table 4. A summary of CLN3-interacting proteins reported by others. Interacting 
domains, research methods, and functions are presented. 

Interactor  Domain 
CLN3 

domain 
Method Function 

CLN5 1) ? ? GST pull-down, 

co-IP 
? 

AP-1, 2, 3 2) ? 232-280 GST pull-down lysosomal targeting of CLN3 

Calsenilin 3) ? 385-438 
YTH, GST pull-

down, co-IP 

regulation of Ca2+-induced 

cell death 

SBDS 4) N-terminus 388-438 YTH, co-IP 
regulation of yeast vacuolar 

pH 

myosin IIB 5) 585-1010 388-438 YTH, co-IP 
regulation of myosin 

distribution, cell migration 
References: 1) Vesa et al., 2002 and Lyly et al., 2009; 2) Kyttälä et al., 2005; 3) Chang et al., 2007;        
4) Vitiello et al., 2010; 5) Getty et al., 2010.  
Abbreviations : AP-1,  adaptor protein complex 1; SBDS, Shwachman-Bodian-Diamon syndrome 
protein; co-IP, co-immunoprecipitation; GST, glutathione S-transferase; YTH, yeast two-hybrid. 
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2.4.5.1 NCL proteins 
CLN3 has been demonstrated to interact with CLN5 (Vesa et al., 2002; Lyly et al., 

2009). However, CLN3-CLN5 complex has not been studied further, except the 

finding that the interaction is at least not contributing to intracellular localisation of 

CLN3 (Lyly et al., 2009). Whether CLN3 interacts with rest of the NCL proteins is 

unclear due to conflicting results from different studies. Based on yeast two-hybrid 

(YTH) analysis, it has been suggested that no interactions exist among PPT1, TPP1 

and CLN3 (Zhong et al., 2000). Later, an independent study using co-

immunoprecipitation argued for the interactions among TPP1, CLN3, CLN6 and 

CLN8 (and PPT1 and TPP1) (Persaud-Sawin et al., 2007). However, both of these 

studies have potential pitfalls. In the yeast-two-hybrid analysis, full-length CLN3 

was exploited, an approach which has been shown to be unfavourable in the YTH 

analyses of hydrophobic integral membrane proteins (Auerbach et al., 2002; Stagljar 

and Fields, 2002). In the co-immunoprecipitation analysis, samples were denatured 

by boiling for several minutes, a procedure which usually results in the aggregation 

of integral membrane proteins (including CLN3, CLN6, and CLN8) and subsequent 

loss of their signal in Western blotting. Further concerns have been discussed 

extensively elsewhere (Getty and Pearce, 2011). 

CLN3 has also been suggested to form non-glycosylated homodimeric 

complexes that are resistant to sodium dodecyl sulfate (SDS) in gel electrophoresis 

analysis (Storch et al., 2007). 

2.4.5.2 Adaptor proteins 
Three adaptor protein complexes, namely AP-1, AP-2 and AP-3 bind CLN3 (Kyttala 

et al., 2005). AP-1 and AP-3 have been shown to facilitate endosomal/lysosomal 

targeting of CLN3 (Kyttala et al., 2005) (see Chapter 2.4.3). The meaning of the 

binding with AP-2, the adaptor of clathrin-mediated endocytosis at the plasma 

membrane, has remained unclear. Although CLN3 is capable of binding AP-2, it is 

not targeted to lysosomes via clathrin-mediated endocytosis at the plasma membrane 

demonstrated by the observation that CLN3 does not accumulate at the cell surface 

in the AP-2-deficient cells (Kyttala et al., 2005). 

2.4.5.3 Flotillin-1 
In the study by Rakheja et al., the lipid raft marker protein flotillin-1 was found to be 

one of the proteins that immunoprecipitated with the CLN3 antibody from bovine 

brain homogenate (Rakheja et al., 2004). However, no controls were shown to 

confirm the specificity of the immunoprecipitation. Therefore, it remains elusive 

whether flotillin and other indicated proteins represent true interaction partners of 

CLN3. 
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2.4.5.4 Calsenilin 
Calsenilin, also named downstream regulatory element antagonist modulator 

(DREAM) or K+ channel interacting protein 3 (KChIP3), is a Ca2+-binding protein 

mainly expressed in the brain (Zaidi et al., 2002). It has been linked to several 

functions affecting different intracellular compartments. Calsenilin enhances 

apoptosis (Jo et al., 2001; Lilliehook et al., 2002) and through binding with ER-

resident presenilin 1 and 2, increases cleavage of the amyloid precursor protein 

(APP) in a manner that elevates the formation of Alzheimer disease-associated β-

amyloid peptide (Buxbaum et al., 1998; Jo et al., 2001; Jo et al., 2003; Lilliehook et 

al., 2003). Calsenilin also binds to cell surface A-type voltage-gated potassium 

channels (An et al., 2000), acts as a transcription repressor (Carrion et al., 1999), and 

is involved in the trafficking of Golgi glycosyltransferases (Quintero et al., 2008).  

Interaction between calsenilin and the C-terminus of CLN3 was revealed in the 

search of calsenilin-interacting proteins (Chang et al., 2007). CLN3-calsenilin 

interaction was found to be impaired in increasing Ca2+ concentrations. Furthermore, 

CLN3 negatively regulates the expression of calsenilin, induces its intracellular 

relocalisation, and subsequently, the co-localisation between the two proteins 

(Chang et al., 2007). There is a strong correlation between the ability of CLN3 to 

bind calsenilin and the susceptibility of cells to Ca2+-induced cell death. Reduction 

in the amount of CLN3, or over-expression of CLN3 containing only the N-

terminus, exposed cells to high ATP-induced intracellular Ca2+ concentrations and 

Ca2+-induced cell death. In contrast, cells expressing full-length CLN3, or the C-

terminal part of CLN3 containing the calsenilin-binding region, displayed normal 

ATP-induced Ca2+ transients and were protected from Ca2+-induced cell death 

(Chang et al., 2007). 

2.4.5.5 Shwachman-Bodian-Diamon syndrome protein (SBDS) 
SBDS protein is mutated in Shwachman-Bodian-Diamon syndrome (Boocock et al., 

2003), an autosomal recessive disorder characterised by skeletal and hematologic 

abnormalities, exocrine pancreatic dysfunction, susceptibility to recurrent infections, 

defects in immunity and increased risk of leukaemia (reviewed in Burroughs et al., 

2009). SBDS is a vital protein highly conserved across species and expressed 

throughout the body, especially in rapidly proliferating tissues (Boocock et al., 2003; 

Zhang et al., 2006a). The protein localises to the nucleus and cytoplasm (Austin et 

al., 2005). SBDS protein function has been associated with apoptosis (Watanabe et 

al., 2009), stabilisation of the mitotic spindle to prevent genomic instability (Austin 

et al., 2008),  deoxyribonucleic acid (DNA) damage and ER stress response (Ball et 

al., 2009) and most of all, ribosomal functions. The yeast homologue of SBDS, 

Sdo1, is required for the late 60S ribosomal subunit maturation (Menne et al., 2007). 

The human homologue has been shown to associate with components of 60S 

ribosome (Ganapathi et al., 2007) and with the proteins nucleophosmin and NIP7 

(Ganapathi et al., 2007; Hesling et al., 2007) known to direct nuclear export of 
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ribosomal subunits and pre-ribosomal RNA (pre-rRNA) processing, respectively 

(Maggi et al., 2008; Morello et al., 2011). 

CLN3 binding to SBDS is also conserved among respective S. cerevisiae 

homologues, Btn1 and Sdo1 (Vitiello et al., 2010). Moreover, the two proteins were 

found to partially co-localise to unidentified punctate cytoplasmic structures 

putatively containing unglycosylated form of Btn1 (Vitiello et al., 2010; Wolfe et 

al., 2011). Using SDO1 deletion yeast strain it was shown that similar to Btn1 

deficiency, Sdo1 deficiency results in alterations in vacuolar pH and vATPase 

activity. SDO1 deletion strain displayed decreased vacuolar pH, H+ transport 

(possibly to compensate imbalance in vacuolar pH), vATPase dependent ATP 

hydrolysis, and decreased expression of vATPase at the vacuole (Vitiello et al., 

2010). Based on the analyses of the effects of BTN1 over-expression on the 

phenotype and the vacuolar properties of SDO1 deletion strain, it was suggested that 

Sdo1 and Btn1 operate in the same intracellular pathway and that Sdo1 regulates the 

function of Btn1 (Vitiello et al., 2010). Although it was shown that defects in the 

ribosomal maturation pathway, in general, affect the yeast vacuole (Vitiello et al., 

2010), it remained elusive whether ribosomal functions of Sdo1 and the regulation 

of vacuolar Btn1 are associated and most importantly, whether the two proteins 

operate similarly in mammalian cells. Nonetheless, Vitiello et al. (2010) suggested 

that the action of SBDS/Sdo1 as a general stress-response protein extends to the 

lysosomal/vacuolar compartment via interaction with CLN3/Btn1. 

2.4.5.6 Non-muscle myosin IIB (NM IIB) 
Three non-muscle myosin heavy chain isoforms exist (NMHC IIA, NMHC IIB and 

NMHC IIC) and they determine the isoform of whole non-muscle myosin II 

molecule (NM IIA, NM IIB and NM IIC). NM IIB plays a role in the polarisation of 

the migration machinery and positioning of the intracellular compartments during 

migration (Lo et al., 2004; Vicente-Manzanares et al., 2007; Vicente-Manzanares et 

al., 2008). NM IIB is predominantly expressed in brain and neurons, and mice 

deleted for MYH10, the gene encoding NMHC IIB, show brain defects (Simons et 

al., 1991; Rochlin et al., 1995; Tullio et al., 2001; Ryu et al., 2006). In neurons, NM 

IIB has been implicated in axonal outgrowth, dendritic spine morphology, synaptic 

transmission, and growth cone motility (Bridgman et al., 2001; Tullio et al., 2001; 

Takagishi et al., 2005; Ryu et al., 2006). 

C-terminal segment of CLN3 associates with non-muscle myosin heavy chain 

IIB (Getty et al., 2010). Using a scratch assay Getty et al. (2010) showed that 

primary mouse embryonic fibroblasts of Cln3-/- mice displayed a migration defect 

and unlike the wild type cells, the migration of Cln3-deficient cells was not affected 

by blebbistatin, an inhibitor of myosin II ATPase activity (Getty et al., 2010). This 

was suggested to indicate that the migration was already impaired in Cln3-/- cells, 

possibly due to dysregulation of myosin IIB. Furthermore, Cln3-deficient fibroblasts 

were shown to display changes in myosin IIB intracellular distribution as well as in 
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the general cell morphology. Cln3-/- cells were found to be more elongated and 
narrow, which likely explained the observed enhanced migration of the cells through 
the filter in Boyden chamber assay (Getty et al., 2010). 

2.4.6 Recurrent themes in studies regarding CLN3 

Based on the protein interaction analyses and biochemical studies in mammalian cell 
lines, CLN3 disease mouse models, and yeast and Drosophila models, it seems that 
CLN3 affects several intracellular processes. However, only some of them have 
been observed in more than one system, or are supported by a specific protein 
interaction partner. A summary of functions linked to CLN3 is presented in Table 5. 

Table 5. A summary of intracellular functions linked to CLN3. 

Intracellular function  
Studies in 

mammals 

Studies in 

yeasts 

Studies in 

Drosophila 
Protein interaction 

studies 

Apoptosis x   Calsenilin, SBDS 
Autophagy x    
Arginine metabolism x x   
Cell migration x   Myosin IIB 
Lipid metabolism x x   
Lysosomal homeostasis x x  SBDS, CLN5 (?) 
Membrane trafficking x x  Myosin IIB 
Mitochondrial functions x    
Neuritogenesis x   Myosin IIB 
Stress response x  x SBDS 
Synaptic functions x   Myosin IIB 
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3 Aims of the study 

Prior to this study the localisation of CLN3 had been investigated and functional 

analyses were initiated. However, functional studies were mostly based on the 

phenotypes of CLN3-deficient cells and animal models, an approach which can not 

reliably confirm the direct role of the protein in respective intracellular events. 

Therefore, studies analysing the function of CLN3 via protein interactions were 

needed. The aim of this study was to identify novel CLN3 interactions and to study 

their relation to CLN3 deficiency. The specific aims of the study were the following: 

• to screen for unknown protein interaction partners of CLN3 by yeast two-hybrid 

and glutathione S-transferase (GST) interaction pull-down methods 

• to analyse the characteristics of two previously unidentified CLN3 interaction 

partners found in the yeast two-hybrid study, fodrin and Na+, K+ ATPase, in the 

Cln3-/- mouse and in the juvenile CLN3 disease patient cells 

• to verify and analyse the potential interaction between CLN3 and the endocytic 

microtubule-binding protein Hook1 

• to verify and analyse the potential interactions between CLN3 and proteins in-

volved in late endosomal/lysosomal membrane trafficking 

• to investigate intracellular membrane trafficking in the context of CLN3 defi-

ciency 
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4 Materials and methods 

4.1 Materials and methods used in the current study 

Materials and methods used in this study are summarised in Table 6. Details of each 

material or method are described in the original publications or below in Chapter 4.2 

(Additional information on materials and methods used in the original publications) 

and Chapter 4.3 (Unpublished materials and methods). 

Table 6. A summary of materials and methods. 

Material or method Detailed information 

Cell cultures I, II, III 

Cloning of cDNA constructs I, II 

(Co-)immunoprecipitation I, II, III, Chapter 4.2.2 

Confocal immunofluorescence microscopy I, II, III 

Cytoplasmic acidification III 

Dissection and culturing of mouse primary cortical neurons I 

Fluorescence recovery after photobleaching (FRAP) III 

GST pull-down of purified His6-Rab7Q67L and His6-RILP III 

GST interaction pull-down with in vitro-translated proteins II 

GST interaction pull-down with tissue extracts Chapter 4.3.1 

LDL receptor-mediated endocytosis assay II 

Mammalian two-hybrid III 

Metabolic labeling II 

Polyclonal antibody production against synthetic peptide II 

Preparation of mouse brain tissue extracts I 

Protein detection by immunofluorescence I, II, III 

Protein detection by immunohistochemistry I 

Protein detection by Coomassie and silver staining Chapter 4.3.1 

Protein detection by Western blotting I, II, III, Chapter 4.2.1 

Protein production by in vitro translation II 

Protein production in Escherichia coli II, Chapter 4.2.4 

Quantitative immunofluorescence image analysis I, III 

Quantitative real-time polymerase chain reaction (qPCR) III 

Quantitative Western blot analysis I 
86Rb+ uptake assay for Na+, K+ ATPase I 

RNA interference III 

Sequencing I, Chapter 4.2.3 

Statistical analyses I, II, III 

Total internal reflection fluorescence (TIRF) microscopy I 

Transferrin uptake and recycling assay II 

Transient transfections I, II, III 

Yeast two-hybrid I, Chapter 4.2.3 
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4.2 Additional information on materials and methods used in 
the original publications 

4.2.1 Protein detection by Western blotting (I, II, III) 
Western blotting was performed according to standard protocol. Briefly, protein 

samples were denatured in Laemmli buffer and if appropriate, boiled briefly. 

Samples intended for detection of CLN3 were not boiled to avoid protein 

aggregation. Proteins were separated on appropriate sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) gels under standard conditions and 

then transferred to a nitrocellulose membrane (GE Healthcare) by standard wet 

blotting method. Blotted membranes were blocked with Tris-buffered saline 

supplemented with 0.05% Tween-20 (TBST) and 5% skimmed milk powder for a 

minimum of 30 minutes at room temperature (RT) in a gentle rotation. After brief 

washing with TBST, primary antibodies diluted in TBST were added and 

membranes were incubated for a minimum of 1 hour at RT followed by washing 

with TBST. Membranes were then incubated with appropriate horseradish 

peroxidase (HRP)-conjugated polyclonal secondary antibodies (Dako Denmark A/S) 

for a minimum of 30 min at RT. Longer blocking or antibody incubations were 

performed at +4°C. Protein-bound antibody complexes were detected by enhanced 

chemiluminescence (ECL) reaction using a commercial ECL-kit (GE Healthcare). 

4.2.2 Hook1 immunoprecipitation (II) 
African green monkey kidney cells (COS-1 cells) were plated on a 6-well culture 

dish and transfected by the calcium-phosphate method followed by metabolic 

labelling with [35S]cysteine. Cells were then collected by trypsinisation and 

resuspended in 100 μl of ice-cold lysis buffer (phosphate-buffered saline (PBS) 

supplemented with 1% Triton X-100 and Complete Protease Inhibitor Cocktail, 

Roche) followed by lysing by two freeze-thaw cycles. 10 μl of each lysate was 

analysed by Western blotting to check transfection efficiency and the remaining 

lysate was used for the immunoprecipitation analysis. Lysates diluted to 1 ml with 

immunoprecipitation buffer (Tris-buffered saline supplemented with 0.05% Tween-

20 and 10 mg/ml bovine serum albumin, BSA) were pre-cleared three times with 50 

μl of 10% heat-killed and formalin-fixed Staphylococcus aureus cells (standardised 

PANSORBIN® Cells, Calbiochem). Pre-cleared samples were then incubated either 

with 5 μl of Hook1 antibody 9005 or 9019 or 1 μl of Hook1 antibody hHK1 

(antibodies are described in the original publication II) at +4°C overnight followed 

by incubation with 20 μl of 10% S. aureus for 3 hours on ice. Immobilised protein 

complexes were then carefully washed with washing buffer (0.6 M NaCl, 0.1% SDS, 

0.05% Tween-20, 0.01 M Tris-HCl pH 7.4), resuspended in Laemmli buffer, boiled 

and separated by SDS-PAGE and finally analysed by autoradiography. 
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4.2.3 Yeast transformation, plasmid isolation and sequencing in yeast 

two-hybrid assay (I) 

CLN3 bait and a library complementary DNAs (cDNAs) were transformed in 

tandem into MaV203 yeast strain using lithium acetate (LiAc) transformation 

protocol. A colony of MaV203 yeast strain was cultured overnight at +30°C in Yeast 

Extract Peptone Dextrose (YPD) medium. Next day, 50 ml of the medium was 

inoculated with the overnight culture to optical density at 600 nm (OD600) of 0.2 – 

0.3, followed by incubation at +30°C until OD600 was between 0.9 and 1. Then, 

cells were spinned down and washed twice with 50 ml of sterile water and once with 

1 ml of 100 mM LiAc. Cells were resuspended in 400 μl of 100 mM LiAc and 

divided into 50 μl aliquots. Cells were pelleted and following reagents were added 

on the cell pellet; 240 μl of 50% polyethylene glycol, 36 μl of 1 M LiAc, 25 μl of 

denatured 2 mg/ml single-stranded DNA, and 1 – 1.5 μg of appropriate cDNA 

diluted in 50 μl of sterile water. Cells were carefully resuspended and incubated for 

30 minutes at +30°C followed by heat shock at +42°C for 30 minutes. After brief 

centrifugation, cells were resuspended in 200 μl of sterile water and plated on 

appropriate synthetic defined (SD) selective plate. 

To isolate positive library cDNAs, a corresponding colony was picked and 

cultured in 3 ml of SD/-Leucine selective media overnight at +30°C. After 

centrifugation a yeast pellet was resuspended in 200 μl of 2% Triton X-100, 1% 

SDS, 100 mM NaCl, 10 mM Tris, pH 8.0 buffer. 200 μl of acid-washed glass beads 

(425 – 600 μm, Sigma) were added and suspensions were vortexed vigorously 5 

times for 1 minute each time and kept on ice for 1 minute between the rounds. 

Proteins were denatured and precipitated by phenol/chloroform/isoamyl alcohol 

extraction, after which DNA was isolated by ethanol precipitation. 

For nucleotide sequence determination, each positive library cDNA was 

polymerase chain reaction (PCR)-amplified with pACT2 vector primers (Proligo). 

PCR products were purified, analysed on agarose gels and sequenced using BigDye 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). 

4.2.4 Production of GST-CLN3 fusion proteins in Escherichia coli 
Escherichia coli DH5α strain was transformed with pGEX4T-3 cDNA constructs 

encoding either the plain GST, or the N-terminally GST-tagged CLN3 fusion 

proteins containing either the N-terminus (amino acids 1-33; GST-CLN3 1-33), the 

first luminal loop (amino acids 56-97; GST-CLN3 56-97) or the major cytoplasmic 

loop (amino acids 232-280; GST-CLN3 232-280) of CLN3. Transformed DH5α 

cells were then cultured overnight in Luria medium supplemented with selective 

antibiotic. Next day, appropriate amounts of selective Luria medium were inoculated 

with overnight cultures and incubated at +30°C until OD600 was approximately 0.6. 

Then, isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to a final 

concentration of 0.5 mM and the cultures were further incubated for 4 hours. The 
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cultures were divided into smaller aliquots to enhance proper cell lysis and to avoid 

aggregation of GST-CLN3 fusion proteins. Cells were pelleted and resuspended in 

PBS supplemented with 0.2 mg/ml lysozyme, 0.4% Triton X-100 and Complete 

Protease Inhibitor Cocktail (Roche). Suspensions were incubated on ice for 4 hours, 

after which sarcosyl was added to a final concentration of 0.1% and suspensions 

were sonicated on ice in short periods. Sonicated suspensions were centrifuged and 

supernatants were collected and if not used immediately, frozen and stored at -70°C. 

4.3 Unpublished materials and methods 

4.3.1 GST interaction pull-down with tissue extracts 

Equal amounts (10 - 80 µg) of Glutathione Sepharose 4B-immobilised GST 

(control), GST-CLN3 1-33, or GST-CLN3 232-280 fusion proteins were mixed with 

1 – 2 mg of mouse whole brain extract (prepared as described in the original 

publication I) and diluted to the total volume of 1 ml with tissue extraction buffer. 

Mixtures were incubated at +4°C for 2 – 3 hours or overnight, depending on the case. 

Then, beads and immobilised protein complexes were washed 3-5 times with cold 

extraction buffer and resuspended in Laemmli buffer. Samples were analyzed on 

SDS-PAGE and protein bands were visualised either by Coomassie staining, silver 

staining or Western blotting.    

For protein identification, SDS-PAGE gels were stained using mass 

spectrometric compatible Coomassie or silver staining protocols. In Coomassie 

staining, gels were incubated in 0.1% Coomassie blue R-350, 30% methanol, 0.48% 

acetic acid staining solution for 20 minutes at RT followed by destaining with 30% 

methanol, 0.48% acetic acid solution over two nights. In silver staining, proteins 

were visualised according to O´Connell and Stults (1997). Stained CLN3 specific 

protein bands were cut from the gel and sequenced by matrix-assisted laser 

desorption/ionisation-time of flight (MALDI-TOF) mass spectrometric peptide mass 

fingerprint analysis at The Protein Chemistry Core Facility of the Institute of 

Biotechnology, University of Helsinki. 

4.4 Ethical aspects 

This study has been evaluated and approved by the Laboratory Animal Care and Use 

Committee of the National Insitute for Health and Welfare, Helsinki. This study has 

been carried out following good practice in laboratory animal handling and the 

regulations for handling genetically modified organism. 
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5 Results and discussion 

5.1 CLN3 protein interaction screening (the original 
publication I, and unpublished data) 

One aim of the current study was to screen for unknown CLN3 interactions 

employing two methods, yeast two-hybrid and GST interaction pull-down. Due to 

the hydrophobic nature of CLN3, utilisation of full-length protein was not applicable. 

Therefore, defined regions of the protein were employed separately. Two of the 

cytoplasmic domains of CLN3, the N-terminal domain and the major cytoplasmic 

loop domain, were used as baits to fish unknown CLN3 interaction partners 

expressed in brain tissues. The third major cytoplasmic segment of CLN3, the C-

terminus, was excluded due to its toxicity to E. coli and autonomous transcription 

activation property observed in previous (Kaczmarski et al., 1997; Leung et al., 

2001b) and in the current studies (data not shown). 

5.1.1 GST-CLN3 interaction pull-down with mouse brain extracts 

Amino acids 1-33 and 232-280 of the N-terminus and the major cytoplasmic loop 

domain of CLN3, respectively, were produced as N-terminally tagged GST fusion 

proteins and used to pull-down CLN3 interacting proteins from mouse whole brain 

extract. Plain GST was used to control the binding specificity.  

The analyses revealed several putative CLN3 binding partners. However, the 

mass spectrometric identification of the CLN3-specific proteins turned out to be 

challenging due to binding of several other proteins with similar electrophoretic 

mobility. However, one of the GST-CLN3 232-280-bound proteins repeatedly found 

to associate with GST-CLN3 232-280 but not with GST control (Figure 8A), was 

recognised in mass spectrometry as immunoglobulin heavy chain binding protein, 

BiP, also known as 78 kDa glucose-regulated protein, GRP78. The binding of 

GRP78/BiP with CLN3 was verified by the subsequent Western blotting analysis of 

the GST-CLN3 interaction pull-down samples (Figure 8B) as well as by CLN3 co-

immunoprecipitation (the original publication I, Figure 2C). Furthermore, 

GRP78/BiP was found to specifically associate with the loop domain but not with 

the N-terminal domain of CLN3 (Figure 8B). At the time of the interaction pull-

down analysis, GRP78/BiP was well-known for its chaperone activity in protein 

folding (Beggah et al., 1996), and therefore, observed interaction between CLN3 

and GRP78/BiP was initially considered to be associated with the synthesis and 

folding of CLN3 in the ER. However, during the course of the CLN3 yeast two-

hybrid analysis and especially in the light of the novel findings on the GRP78/BiP, 

the interaction turned out to be putatively important also for the CLN3 protein 
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functions. This will be discussed in more detail in the context of CLN3/ Na+, K+ 

ATPase interaction (Chapter 5.2.3). 

 

 

Figure 8. GRP78/BiP associates with CLN3 in GST interaction pull-down assay. 
(A) GST-CLN3 232-280 pull-down from mouse brain extract. Proteins in pull-down 
samples were visualised by silver-staining. Intensively stained protein band specifically 
found in GST-CLN3 232-280 sample was identified in mass spectrometry as mouse 
GRP78/BiP protein. (B) GST pull-down analysis with GST-CLN3 1-33 and GST-CLN3 
232-280. Western blotting with anti-GRP78/BiP confirmed the interaction with CLN3 
amino acid portion 232-280 but excluded the association with the N-terminus (amino 
acids 1-33) of CLN3. 

5.1.2 CLN3 yeast two-hybrid assay 
Prior to the current study, attempts to use yeast two-hybrid approach were 

unsuccessful in the identification of the interaction partners for CLN3, or its yeast 

orthologue Btn1p (Cottone et al., 2001; Leung et al., 2001a). This was partly due to 

attempts to use full-length protein or membrane-bound segments containing 

domains as baits in a classical YTH assay, an approach unsuitable for insoluble 

integral membrane proteins (Auerbach et al., 2002; Stagljar and Fields, 2002). At the 

time of initiating the current study, well-established YTH applications for full-length 

transmembrane proteins were not available and therefore, defined cytoplasmic 

domains of CLN3, amino acids 1-40 and 232-280, were utilised as baits in the 

traditional Fields´ GAL4 YTH assay (Fields and Song, 1989). 

Similar to the GST-CLN3 interaction pull-down analysis, the N-terminal and the 

major cytoplasmic loop domains of CLN3 were found to associate with a number of 

putative interacting proteins. Altogether, analysis of 30 000 co-transformants in each 

CLN3 YTH assay resulted in 396 putative positive library clones for the CLN3 1-40 

bait and 159 for the CLN3 232-280 bait, most of which were identified. Sequence 

homology analysis revealed that only a fraction of the putative positive clones 

represented previously identified proteins or uncharacterised proteins with partial 

homology to known proteins. Rest of the clones represented non-coding regions or 

yet unidentified proteins (expressed sequence tags (ESTs), untranslated regions 
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(UTR), clones, and sequences with no homology to known proteins or functional 

domains).  

To evaluate their specificity for CLN3, each positive library clone classified to 

encode protein was reassayed with appropriate CLN3 bait and vector control. Those 

which were found to be CLN3-specific were taken as true positives. Altogether, 

approximately 40 proteins were identified as true CLN3 1-40 positives and six as 

true CLN3 232-280 positives, with three of them associating with both CLN3 baits 

(Table 7).  

The biological relevance of each CLN3 interaction candidate was scored on the 

basis of its function, intracellular localisation and molecular interactions. As a result, 

several interesting proteins were estimated to be worth further analyses. However, 

due to the substantial number of the proteins, further selection was performed for 

initial functional analysis. Focus was set to proteins involved in intracellular 

membrane trafficking and/or cytoskeletal functions. These selection criteria were 

based on the ongoing analysis of putative CLN3/Hook1 interaction (the original 

publication II) and were further supported by later reports linking CLN3 to 

intracellular membrane trafficking (Fossale et al., 2004; Luiro et al., 2006; Weimer 

et al., 2006). In addition, proteins which were known to be part of the same protein 

interaction network or encoded by several independent clones were considered 

highly important. Among these, plasma membrane-associated cytoskeletal and 

endocytic protein fodrin and its multifunctional plasmalemmal/endosomal 

interaction partner Na+, K+ ATPase, both positive with the CLN3 1-40 bait, were the 

first candidates selected for further analysis (the original publication I).  

Fodrin interacts indirectly with and regulates the plasma membrane-association 

of Na+, K+ ATPase (Morrow et al., 1989; Nelson and Hammerton, 1989; Kizhatil et 

al., 2009). Furthermore, four CLN3 1-40 positive clones were found to encode the β 

subunit of Na+, K+ ATPase heterodimer. Three clones encoded amino acids 88-303, 

158-303 or 250-303 of the β1 isoform and one clone encoded amino acids 187-290 

of the β2 isoform. Fodrin, a heterotetrameric α-β complex, was represented by one 

clone encoding the amino acids 2265-2364 of β-fodrin, also known as β-II-spectrin 

or spectrin beta chain, brain 1. The finding that Na+, K+ ATPase and associated 

proteins may represent true CLN3 interacting proteins was emphasised by the 

observation that also two other proteins, FXYD domain-containing ion transport 

regulator 6 (FXYD6, phosphohippolin) and beta-arrestin 1 (arrestin 2), both positive 

with the CLN3 1-40 bait, were later revealed to be functionally connected to Na+, K+ 

ATPase (Delprat et al., 2007; Kimura et al., 2007; Shiina et al., 2010). The analyses 

of the additional Na+, K+ ATPase -associated putative CLN3 interacting proteins 

among other interesting interaction candidates found in the CLN3 YTH assay are 

currently in progress (Scifo, E., Uusi-Rauva, K. et al., unpublished). 
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Table 7. Proteins confirmed to interact with CLN3 domain(s) in YTH assay.  

CLN3 1-40 yeast two-hybrid 
No of 

clones 

Activator of 90 kDa heat shock protein ATPase homologue 1 (AHA1) (O95433) 1 

ADAMTS-9 (A disintegrin and metalloproteinase with thrombospondin motifs 9) (Q9P2N4) 2 

Adenylate cyclase, type VI (O43306) 1 

Alpha-2-macroglobulin (P01023) 1 

ATP-dependent metalloprotease FtsH1 homologue (Q96TA2) 1 

Atrial natriuretic peptide receptor B (guanylate cyclase B) (P20594) 1 

Beta-arrestin 1, isoform 1A (P49407) 1 

CB1 cannabinoid receptor-interacting protein 1 (Q96F85) 2 

Clusterin (Apolipoprotein J) (P10909) 1 

Collagen alpha 1(I) chain (P02452) 2 

Collagen alpha 2(I) chain (P08123) 1 

β-fodrin (Spectrin beta chain, brain 1, long isoform) (Q01082) 1 

FSCN1 protein (Fascin 1) (Q16658) 1 

FXYD domain-containing ion transport regulator 6 (FXYD6) (Q9H0Q3) 1 

Glomulin (FKBP-associated protein) (Q92990) 1 

Heat shock cognate 71 kDa protein (isoform 1) (P11142) 1 

Heat shock protein HSP60 (Q9P0X2) 1 

Heterogeneous nuclear ribonucleoprotein H (P31943) 1 

H. sapiens heterogeneous nuclear ribonucleoprotein A2/B1 (HNRPA2B1) (Q9BWA9) 1 

N-myc proto-oncogene protein (P04198) 1 

Oxidation resistance 1 (Q9NWC7) 1 

Peroxiredoxin 6 (P30041) 1 

Protein arginine N-methyltransferase 6 (Q96LA8) 1 

Putative uncharacterized protein DKFZp547J036 (ELAVL3 protein) (Q9H024) 2 

Sodium/potassium-transporting ATPase beta-1 chain (P05026) 3 

Sodium/potassium-transporting ATPase beta-2 chain (P14415) 1 

Ubiquitin-activating enzyme E1C (Nedd8-activating enzyme E1C) (Q8TBC4) 1 

Uncharacterized hypothalamus protein HT008 (Q8IWB9) 1 

Voltage-dependent anion-selective channel protein 3 (VDAC-3) (Q9Y277) 1 

Zinc finger protein clone 647 (P15622) 2 

CLN3 232–280 yeast two-hybrid  

Adapter-related protein complex 1 gamma 1 subunit (O43747) 1 

Synaptotagmin IV (Q9H2B2) 2 

CLN3 1-40 yeast two-hybrid / CLN3 232–280 yeast two-hybrid  

Elongation factor 1-alpha 1 (P04720) 1/4 

Microtubule-associated protein 1A (MAP 1A) (P78559) 1/1 

THAP domain protein 11 (Q96EK4) 1/2 
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The large number of positive library clones in the CLN3 YTH assay most likely 

results from the utilisation of short protein domains. It would be of great interest to 

test CLN3 in a novel YTH application designed for the full-length transmembrane 

proteins. This so-called split-ubiquitin yeast two-hybrid system (Stagljar et al., 1998; 

Stagljar and te Heesen, 2000) would perhaps provide additional CLN3 interacting 

proteins but also help in defining true interactions obtained in the classical YTH 

analysis. 

5.2 CLN3 and Na+, K+ ATPase-fodrin complex (the original 
publication I) 

Following experiments were performed to verify putative CLN3/fodrin and CLN3/ 

Na+, K+ ATPase interactions and to analyse their relation to CLN3-deficiency in 

mammalian cells. 

5.2.1 CLN3 interacts with Na+, K+ ATPase and fodrin 

Putative interactions of CLN3 with fodrin and Na+, K+ ATPase were verified by co-

immunoprecipitation. Full-length CLN3 over-expressed in COS-1 cells was 

immunoprecipitated with the rabbit polyclonal antibody produced against amino 

acids 242-258 of the major cytoplasmic loop of CLN3. The presence of fodrin and 

Na+, K+ ATPase in the CLN3 co-immunoprecipitate was tested by Western blotting 

with antibodies against the endogenous proteins (the original publication I, Figure 2). 

Due to lack of Western blot compatible β-fodrin antibody, fodrin was assayed with 

an α-fodrin antibody. Na+, K+ ATPase was assayed with an antibody produced 

against the most widely expressed Na+, K+ ATPase α subunit, α1, as the immunoblot 

detection of the β1 subunit with the available β1 antibody was not possible due to 

similar electrophoretic size of Na+, K+ ATPase β1 (approximately 55 kDa) and the 

heavy chain of the precipitating antibody. As a result, both tested proteins were 

confirmed to co-immunoprecipitate with CLN3 (the original publication I, Figure 

2A).  

The interaction between CLN3 and Na+, K+ ATPase was also studied by testing 

whether CLN3 immunoprecipitates with Na+, K+ ATPase β1 antibody. Fodrin and 

GRP78/BiP known to interact with Na+, K+ ATPase were utilised as positive 

controls. This approach also showed that Na+, K+ ATPase and CLN3 co-

immunoprecipitate as CLN3 and the positive controls were confirmed to 

immunoprecipitate with the Na+, K+ ATPase -precipitating antibody (the original 

publication I, Figure 2B). 

These results support the molecular connection between full-length CLN3, fodrin 

and Na+, K+ ATPase.  
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5.2.2 Abnormal fodrin cytoskeleton in CLN3 deficiency 

To study whether plasma membrane-associated fodrin cytoskeleton is affected in 

CLN3 deficiency, juvenile CLN3 disease fibroblasts and Cln3-/- mouse brain 

sections were analysed by immunofluorescence microscopy and 

immunohistochemistry, respectively. Due to the properties of available fodrin 

antibodies, antibodies recognising different subunits of fodrin tetramer were utilised. 

CLN3/Cln3 deficiency was found to be marked by abnormalities in the fodrin 

staining. This was demonstrated by the confocal immunofluorescence microscopy 

analyses of α-fodrin in the patient fibroblasts and control cells grown to equivalent 

confluence as well as immunohistochemical analyses of β-fodrin in brain sections of 

1- and 3-month-old wild type and Cln3-/- mice. While most of the fodrin signal was 

diffuse in control cells, the structure of fodrin cytoskeleton appeared more 

punctuated in the patient fibroblasts (the original publication I, Figure 4). 

Furthermore, compared to the wild type brain sections (the original publication I, 

Figure 5A, C), Cln3-/- brain tissue showed more faint cell membrane 

immunostaining of fodrin in the hippocampal pyramidal neurons and abnormally 

faint filamentous staining in the cortex already in 1-month-old animals (the original 

publication I, Figure 5B, D). The abnormal immunostaining of fodrin in Cln3-/- 
mouse brain suggests structural abnormalities in the neuronal fodrin cytoskeleton as 

cell morphology (the original publication I, Figure 5E, F) and the expression level of 

fodrin (the original publication I, Figure 6) were found indistinguishable between wt 

and Cln3-/- samples. These findings suggest that CLN3/Cln3 deficiency results in 

changes in the plasma membrane-associated fodrin cytoskeleton. 

5.2.3 Impaired ouabain-induced endocytosis of Na+, K+ ATPase in Cln3-/- 
neurons suggests defects in non-pumping functions of the protein 

Na+, K+ ATPase represents the major pump for Na+/K+ exchange in neurons 

(reviewed in Benarroch, 2011). Therefore, it was first studied whether loss of Cln3 

affects the plasmalemmal net ion pumping activity of Na+, K+ ATPase. The Na+, K+ 

ATPase activity was determined in wt and Cln3-deficient cortical primary neurons 

grown for 8 or 12 days after plating, using the classical 86Rb+ uptake assay utilising 

the cardiotonic steroid ouabain as an Na+, K+ ATPase -specific inhibitor. No 

statistically significant differences in the total or in the ouabain-sensitive 86Rb+ 

uptake were found between the control and Cln3-deficient neurons (the original 

publication I, Figure 3). The potential impact of Na+, K+, 2Cl- cotransporter was 

excluded by repeating the assay in the presence of the specific inhibitor, furosemide 

(data not shown). Therefore, combined with the finding that also the intracellular K+ 

concentrations were unaltered in Cln3-deficiency (data not shown), these results 

suggest that loss of Cln3 has no major effect on the basal plasmalemmal net ion 

pumping activity of Na+, K+ ATPase in the primary neuronal cultures. 



Results and discussion 

 

THL — Research 82/2012 76 Molecular Interactions of Neuronal 
Ceroid Lipofuscinosis Protein CLN3 

 

Na+, K+ ATPase exists in two functionally distinct pools. While one pool is 

known for its role as a traditional Na+/K+ transporter (reviewed in Kaplan, 2002; and 

Benarroch, 2011), the other is engaged in cellular processes other than ion pumping 

(reviewed in Aperia, 2007; Liang et al., 2007; Schoner and Scheiner-Bobis, 2007; 

Tian and Xie, 2008; Bagrov et al., 2009; Lingrel, 2010). Interestingly, also the latter 

pool of the protein is regulated by ouabain. Following ouabain-binding, the non-

pumping pool of the Na+, K+ ATPase accumulates in clathrin-coated pits and 

caveolaes induces cytosolic cascades of various intracellular events, including 

activation of signalling proteins, apoptosis and calcium oscillations (see references 

above). These events are eventually followed by endocytosis of the protein (Liu et 

al., 2002; Liu et al., 2004; Kesiry and Liu, 2005; Liu et al., 2005). This aspect of the 

Na+, K+ ATPase, relative to Cln3 deficiency, was explored utilising total internal 

reflection fluorescence (TIRF) microscopy and image analysis. First, the amount of 

different Na+, K+ ATPase subunits at the plasma membrane relative to that in the 

total cellular pool in Cln3-deficient and wt neurons was measured by determining 

the correlation value of co-localisation between TIRF and total fluorescence signals. 

Compared to that in control cells, the correlation values of α3 and β1 subunit signals 

were increased in Cln3-/- neurons indicating that Cln3-deficient cells   had relatively 

more α3 and β1 in the plasma membrane-associated fraction. Correspondingly, all 

other analysed Na+, K+ ATPase subunits were found to be normally distributed 

between the cell surface and intracellular compartments (the original publication I, 

Figure 7). To study the observed defect in more detail, the absolute amounts of 

plasma membrane-associated α3 and β1 were measured both at basal condition and 

after ouabain-induced endocytosis utilising fluorescence intensity analysis. The 

analyses of TIRF images showed that in the basal condition, the averaged absolute 

plasmalemmal amounts of both subunits were abnormal in Cln3-/- neurons. The basal 

plasmalemmal amount of β1 was slightly increased (the original publication, I, 

Figure 8A, black bars) and the amount of α3 was remarkably decreased in the Cln3-

deficient neurons (the original publication, I, Figure 8B, black bars). Furthermore, 

the analyses of the total fluorescence images revealed that the averaged total cellular 

expression of both subunits was decreased in Cln3-deficient cells (data not shown), 

α3 being more affected (the original publication I, Figure 9, compare A and E). 

These results suggest that although the total cellular expression of Na+, K+ ATPase 

α3 and β1 is decreased in Cln3-/- neurons, their targeting to the plasma membrane is 

favoured at the expense of the intracellular pool in Cln3 deficiency. Furthermore, 

Cln3-deficient neurons remained with higher levels of the protein at the cell surface 

after ouabain-treatment (the original publication I, Figure 8, grey bars and Figure 9, 

compare H and D, P and L). This indicates that the loss of Cln3 results in defects in 

the ouabain-induced endocytosis of the Na+, K+ ATPase α3 and β1. The fact that the 

absolute amount of Na+, K+ ATPase α3 at the cell surface of Cln3-deficient neurons 

was even increased during ouabain-treatment may be due to increased expression of 

the protein and subsequently, repleatment of the cell surface-associated pool (the 
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original publication I, Figure 9, compare E and G). This has been reported to occur 

also in other conditions (Tian et al., 2009).  

In summary, the basal cell surface association of a neuron-specific Na+, K+ 

ATPase (α3/β1) is increased in Cln3-/- neurons most likely due to defective 

endocytosis of the protein. However, CLN3 may additionally contribute to the basal 

cell surface targeting of Na+, K+ ATPase already in the ER via the interaction with 

GRP78/BiP, the protein essential for maturation of Na+, K+ ATPase (Beggah et al., 

1996). This study showed for the first time that ouabain also induces the endocytosis 

of Na+, K+ ATPase in neurons, which suggests that the ouabain-regulated non-

pumping functions of Na+, K+ ATPase may also have an important role in neuronal 

cells. Most importantly, the abnormal response of Cln3-/- neurons to ouabain, 

together with the reported finding that GRP78/BiP is involved in ouabain-induced 

endocytosis of Na+, K+ ATPase (Kesiry and Liu, 2005), suggests that CLN3 may be 

involved in the above-mentioned ouabain-regulated non-pumping functions of Na+, 

K+ ATPase.  

5.3 CLN3 and endosomal/lysosomal membrane trafficking (the 
original publications II and III) 

In parallel with the screening of novel CLN3 interactions, an approach focusing on 

the confirmation of the potential interacting partners was also utilised. This study 

was originally initiated in response to findings obtained with a CLN3 knock-out 

yeast model, btn1Δ. The btn1Δ strain has been reported to have increased expression 

of BTN2 (Pearce et al., 1999a). Btn2p shows 38% similarity to human Hook1 

protein (Pearce et al., 1999a). At the time of initiating the current study no reports on 

the function of Hook1 were published and its role in intracellular events could only 

be estimated based on the available information on its Drosophila and S. cerevisiae 

homologues. At that time, S. cerevisiae Btn2p had been suggested to have a role in 

maintenance of cellular pH homeostasis (Chattopadhyay et al., 2000) while 

Drosophila hook had been shown to be required for the trafficking in late 

endosomal/lysosomal compartments (Kramer and Phistry, 1996; Kramer and Phistry, 

1999; Sunio et al., 1999). In the course of the study, it was reported that also Btn2p 

and possibly human Hook1 are involved in the intracellular trafficking processes as 

it was shown that Btn2p interacts with the yeast Yif1 protein (Chattopadhyay et al., 

2003), a component of a Ypt1 (Rab1) complex required for the vesicular trafficking 

between the ER and Golgi (Barrowman et al., 2003) and that Hook1 belongs to a 

novel microtubule-binding protein family of Hook proteins (Walenta et al., 2001). 

Therefore, it was of interest to analyse the putative role of CLN3 in intracellular 

membrane trafficking. The study consisted of 1) the analyses of putative interactions 

between CLN3 and proteins involved in the intracellular membrane trafficking, 2) 

characterisation of the effects of CLN3 and its mutants on confirmed interacting 
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proteins, and 3) analyses on the possible defects in the intracellular membrane 

trafficking in CLN3-deficiency. 

5.3.1 CLN3 interacts with several proteins involved in late 
endosomal/lysosomal membrane trafficking 

5.3.1.1 CLN3 interacts with Hook1 
The molecular association between CLN3 and Hook1 was tested by GST pull-down 

method utilising in vitro-translated 35S-labeled-Hook1 and different domains of 

CLN3 expressed as N-terminally tagged GST-fusion proteins. Densitometric 

autoradiographic analysis of three separate GST interaction pull-down experiments 

showed that compared to the GST control, both cytosolic CLN3 domains employed, 

the N-terminal domain (amino acids 1-40) and the major cytoplasmic loop domain 

(amino acids 232-280), but not the lumenal domain (amino acids 56-97), of CLN3 

showed a weak but statistically significant interaction with cytosolic Hook1 protein 

(the original publication II, Figure 5). Inspired by the report on the physical 

interaction between Btn2p and Ypt1 (Rab1) yeast proteins (Chattopadhyay et al., 

2003), the interaction of Hook1 with several different mammalian Rab proteins was 

also examined. As a result, Hook1 was found to interact with N-terminally enhanced 

green fluorescence protein (EGFP)-tagged Rab7, Rab9 and Rab11 while no 

association with negative controls, non-endocytic EGFP-Rab24 and bare EGFP, was 

detected (the original publication II, Figure 6). Furthermore, confocal 

immunofluorescence microscopy analysis of HeLa cells showed that Hook1 and 

EGFP-tagged Rab7 co-localise in the same intracellular structures. Furthermore, 

compared to the proteins expressed alone, Hook1 and EGFP-Rab7 in double-

transfected cells showed altered intracellular distribution (the original publication II, 

Figure 7). This was shown to be specific to Rab7 as no similar effect on other tested 

Hook1-associated Rab proteins was observed (the original publication II, Figure 7). 

The finding that Hook1 interacts with and affects the intracellular localisation of late 

endocytic Rab7 was later supported by the report showing that Hook1 interacts with 

the Rab7-binding HOPS complex in mammalian cells (Richardson et al., 2004; 

Wang et al., 2011). This is possibly mediated by a Hook proteins-containing 

FTS/Hook/FHIP multiprotein complex (Xu et al., 2008). In addition, the interaction 

between Hook1 and Rab9, a mediator of vesicle transport from LE to the Golgi 

compartments, was later supported by yeast studies showing that Btn2p interacts 

with SNAREs, cargo proteins, and coat components involved in endosome-Golgi 

protein sorting and that Btn2p is specifically required for the retrieval of Yif1 back 

to the Golgi apparatus (Kama et al., 2007; Kanneganti et al., 2011). Therefore, it is 

likely that Hook1 represents a general player in a trafficking network and mediates 

vesicular trafficking between various compartments. Furthermore, it seems that in 

yeast, Hook1 (Btn2p) has a more diverse role than in Drosophila and mammals. In 

addition to its role in intracellular membrane trafficking and maintenance of cellular 
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pH homeostasis, Btn2p has been suggested to regulate the plasma membrane 

arginine uptake and ion homeostasis  (Chattopadhyay and Pearce, 2002; Kim et al., 

2005). 

5.3.1.2 CLN3 interacts with Rab7-RILP effector complex and associated 
motor proteins 

The results above suggested for the first time that due to the interaction with Hook1, 

mammalian CLN3 is connected to cytoskeletal and intracellular membrane 

trafficking processes at the molecular level. Most importantly, CLN3 may also have 

a physical interaction and a functional role in the processes guided by endocytic Rab 

GTPases, especially those implicated in the trafficking of CLN3-associated late 

endosomal/lysosomal compartments. Therefore, next step in the study was to test 

putative interaction between CLN3 and Hook1-interacting endosome/lysosome 

localised Rab7. This was done by co-immunoprecipitation. N-terminally Xpress-

tagged Rab7 was expressed with or without (untransfected cell control) CLN3 in 

COS-1 cells and the lysates were processed for immunoprecipitation with or without 

(matrix control) CLN3 amino acids 242-258 antibody followed by Western blotting 

with CLN3 and Xpress antibodies. Xpress-Rab7 was found to co-immunoprecipitate 

with CLN3 while no signal was detected in control samples (the original publication 

III, Figure 7A). To test whether CLN3 also interacts with the Rab7 effector RILP, 

the co-immunoprecipitation experiment described above was also carried out with 

Xpress-tagged RILP protein, and results confirmed that CLN3 indeed interacts with 

RILP recombinant protein (the original publication III, Figure 7B). These results 

suggested that CLN3 interacts with the Rab7 effector complex.  

The above-mentioned interactions of CLN3 were analysed in more detail. First, 

the Rab7 interaction domain(s) of CLN3, and the preferred form of Rab7 

participating in the interaction were determined by mammalian two-hybrid assay 

(MTH). Two major cytoplasmic domains of CLN3, amino acids 1-40 and amino 

acids 232-273, were separately cloned into the GAL4 DNA-binding domain vector 

pM. The C-terminal segment of CLN3 was excluded from the analysis due to its 

autonomous transcriptional activation properties (Leung et al., 2001b) (Uusi-Rauva, 

K. et al., unpublished data). A wild type Rab7, a GTPase-deficient constitutively 

active Rab7Q67L mutant and a dominant-negative Rab7T22N mutant, unable to 

release GDP, were cloned into the activation domain vector pVP16. COS-1 cells 

were transfected with the hybrid vectors and subsequently, analysed for the 

expression of the GAL4-dependent CAT reporter gene by CAT ELISA assay. The 

results of three separate experiments clearly demonstrated that only the expression 

of CLN3 amino acids 1-40 with Rab7wt and Rab7Q67L resulted in higher 

expression of reporter gene than the controls (the original publication III, Figure 

8A). This indicated that CLN3 preferably interacts with active GTP-bound form of 

Rab7 via its N-terminal domain.  
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Next, GST pull-down experiments and purified proteins were utilised to test 

whether CLN3 interacts directly with GTP-bound Rab7 or possibly via interaction 

with RILP. GST, GST-CLN3 1-33 or GST-CLN3 232-280 fusion proteins bound to 

the glutathione Sepharose were incubated with purified His6-Rab7Q67L and/or His6-

RILP recombinant proteins. Immunoblot analysis with antibodies produced against 

Rab7 and RILP revealed relatively weak but experimentally consistent direct 

binding between the N-terminal domain of CLN3 and His6-Rab7Q67L (the original 

publication III, Figure 8B). Instead, RILP recombinant protein was found to interact 

directly with the cytoplasmic loop of CLN3 (the original publication III, Figure 8B). 

The difference in the CLN3-domain specificities of Rab7 and RILP proteins was 

supported by the co-immunoprecipitation experiments utilising a CLN3 antibody 

produced against the Rab7 interacting domain of CLN3. Compared to that with 

CLN3 242-258 antibody, CLN3 1-33 antibody immunoprecipitated significantly less 

Xpress-Rab7 but did not interfere the immunoprecipitation of RILP (the original 

publication III, Online Resource 1). Since RILP immunoprecipitates with the 

antibody produced against amino acids 242-258 of the same cytoplasmic loop 

domain of CLN3 that binds RILP (the original publication III, Figure 8 and Online 

Resource 1), it most likely interacts with CLN3 via amino acids outside of this 

epitopic region.  

Together, these results indicate that active, GTP-bound Rab7 and RILP proteins 

interact directly with CLN3 but through different cytoplasmic domains of CLN3. 

GST pull-down and mammalian two-hybrid experiments suggested that the 

interaction between the N-terminal segment of CLN3 and Rab7 is relatively weak. 

However, the interaction may be stronger between full-length proteins due to 

stabilisation of the interaction by other CLN3 interacting proteins such as RILP. In 

addition, several other proteins involved in the intracellular membrane trafficking of 

late endosomal/lysosomal compartments were determined to co-immunoprecipitate 

with CLN3 (the original publication III, Figure 6). Tubulin and endogenous 

components of both plus and minus end-directed late endosomal/lysosomal 

microtubular motor complexes, namely dynactin, dynein, and kinesin-2, were found 

to interact with CLN3 (the original publication III, Figure 6). 

  

5.3.1.3 Mutations in CLN3 disturb interactions with Rab7 and RILP 
proteins 

To analyse whether juvenile CLN3 disease-associated mutations in CLN3 result in 

disturbances in the interactions between CLN3 and late endosomal/lysosomal motor 

protein complexes, quantitative co-immunoprecipitation analyses were performed 

with wild type CLN3 and two disease-associated CLN3 mutants, lysosome-localised 

CLN3E295K and ER-retained CLN3Δex7-8 (the original publication III, Online 

Resource 3). Experiments involving CLN3Δex7-8 were performed with anti-CLN3 

1-33 antibody, and experiments involving CLN3E295K were performed either with 
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anti-CLN3 1-33 (Online Resource 3c, d) or anti-CLN3 242-258 (Online Resource 3a) 

antibodies. Quantities of indicated interacting proteins “pulled-down” with CLN3 

mutants were compared to that with wild type CLN3. Due to limited amount of 

available CLN3 antibodies only few replicates per condition were included. Based 

on these analyses, CLN3Δex7-8 shows a reduced binding affinity to Rab7 (the 

original publication III, Online Resource 3a, b). This observation is consistent with 

the intracellular localisation of the mutant. CLN3Δex7-8 is retained in the ER and 

thus, is incapable to interact with late endosomal/lysosomal proteins. Interaction 

between CLN3Δex7-8 and RILP was not tested due to the fact that CLN3Δex7-8 

mutant lacks the RILP-interacting domain and naturally, cannot interact with the 

protein. There were also slight changes in the binding affinities between 

CLN3E295K and dynactin, although this was not significant at the chosen 

confidence level (0.05), and with only few replicates (the original publication III, 

Online Resource 3a). CLN3E295K mutant was found to bind significantly less RILP 

than the wild type CLN3, especially when Rab7 was co-expressed with RILP and 

CLN3 (the original publication III, Online Resource 3c,d). In addition, compared to 

wild type protein, CLN3E295K interacts less efficiently with Rab7 in cells 

simultaneously expressing Rab7 and RILP (Online Resource 3c, d). These results 

indicate that interactions between CLN3 and Rab7-RILP effector complex are 

disturbed in juvenile CLN3 disease. 

5.3.2 Effects of CLN3 and its mutants on Hook1 protein 
When co-localisation between CLN3 and Hook1 was studied by confocal 

immunofluorescence microscopy it was observed that high expression levels of 

native or EGFP-tagged CLN3 in HeLa or COS-1 cells resulted in drastic changes in 

the intracellular localisation of Hook1 (the original publication II, Figure 1; COS-1 

cells and native CLN3 not shown). In basal conditions (data not shown) and in co-

expression with EGFP-tagged control protein, sialin, Hook1 had a diffuse 

cytoplasmic staining pattern while co-expression with CLN3 induced dramatic 

relocalisation of the protein to large unidentified dot-like structures (the original 

publication II, Figure 1). Interestingly, when Hook1-expressing HeLa cells were 

treated with the microtubule-depolymerising agent, nocodazole, an experiment 

inspired by a novel report on microtubule-binding properties of Hook1 (Walenta et 

al., 2001), the similar Hook1 aggregates were observed (the original publication II, 

Figure 2C). Therefore, it is possible that the formation of CLN3-induced Hook1-

aggregates also involves detachment of Hook1 from microtubules. 

Although the exact content of the CLN3-induced Hook1 aggregates remained 

elusive, they were found to contain Hook1 in a form which had lost or hidden 

antigenic epitope sites. This was shown by an experiment where metabolically 

labelled Hook1, over-expressed in COS-1 cells either with vector control, control 

protein sialin, or with CLN3, was immunoprecipitated from cell lysates with three 
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separate Hook1 antibodies. While Hook1 was clearly immunoprecipitable when 

expressed with the vector control or the control protein, no protein was precipitated 

from Hook1/CLN3 cell lysates (the original publication II, Figure 2A and B, shown 

for one precipitating Hook1 antibody). Similar results were obtained with both 

tested disease-associated CLN3 mutants, CLN3Δex7-8 and CLN3E295K (the 

original publication II, Figure 2B).  

Substantial changes in the properties of Hook1 due to high expression levels of 

CLN3 imply that Hook1 may be regulated by CLN3 via mechanisms that affect its 

intracellular localisation and association with microtubules. 

5.3.3 Effects of CLN3 and its mutants on late endosomal/lysosomal 
compartments 

The finding that CLN3 interacts with several important proteins involved in late 

endosomal/lysosomal trafficking is in line with the reported observation that 

immortalised neuronal precursor cells expressing the ER-retained CLN3 mutant, 

CLN3Δex7-8, displayed changes in the distribution of endosomal/lysosomal 

compartments (Fossale et al., 2004). In the current study, it was tested whether 

another disease-associated CLN3 mutant, lysosome-localised CLN3E295K, exhibits 

similar properties. Although CLN3E295K mutation is associated with protracted 

disease progression, it eventually causes rapid deterioration and premature death 

(Aberg et al., 2009). This suggests that this mutant possesses endosomal/lysosomal 

function(s) which in vivo do not result in acute, severe insult but rather in changes 

which become lethal over time. However, high levels of the mutant protein may 

accelerate these processes and thus provide a valuable tool to study the effect of the 

lysosomal CLN3 mutant. Therefore, wild type CLN3 and CLN3E295K were over-

expressed in HeLa cells followed by analyses of late endosomal/lysosomal 

compartments by immunofluorescence microscopy. 

Interestingly, although both wild type CLN3 and the CLN3E295K mutant 

located to LAMP-1-positive LEs/lysosomes (the original publication III, Figures 1C 

and F, respectively), the staining pattern of the CLN3 mutant and subsequently, 

LAMP-1-positive compartments, was different from that in wild type CLN3-

transfected cells. The CLN3E295K mutant displayed a tight perinuclear distribution 

while the signal of wild type CLN3 was more dispersed (the original publication III, 

Figures 1D or G and A, respectively). As expected, compared to untransfected and 

wild type CLN3-transfected cells, high expression levels of the CLN3E295K mutant 

also resulted in notable changes in the position of LAMP-1-positive LEs/lysosomes. 

In CLN3E295K-transfected HeLa cells, LEs/lysosomes were aggregated on one side 

of the nucleus while in the control cells, these compartments appeared more 

dispersed around the nucleus and additionally, the cytoplasm (the original 

publication III, Figure 1E and B, respectively). Instead, analysis of early endosomal 

antigen 1 protein (EEA1)-positive compartments showed that CLN3E295K had no 
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detectable effect on the steady-state location of EEs (the original publication III, 

Figure 1H), thus suggesting that CLN3E295K specifically disturbs the steady-state 

distribution of late endosomal/lysosomal compartments. Interestingly, confocal 

immunofluorescence microscopy and image analysis of fibroblasts from healthy 

control and from two juvenile CLN3 disease patients carrying either CLN3Δex7-

8/CLN3Δex7-8 (homozygous) or CLN3E295K/CLN3Δex7-8 (compound 

heterozygous) mutation demonstrated that late endosomal/lysosomal compartments 

in patient fibroblasts were also located abnormally close to a perinuclear region (the 

original publication III, Online Resource 2). 

Supporting the finding that CLN3 interacts with proteins of late 

endosomal/lysosomal microtubular trafficking, the CLN3E295K-induced 

aggregation of LAMP-1-positive compartments was confirmed, by 

immunofluorescence microscopy analyses, to be dependent on the integrity of the 

motor protein complexes and microtubular network. Indeed, when CLN3E295K-

transfected HeLa cells were disrupted either for the dynactin complex by over-

expression of EGFP-tagged p50dynamitin (Echeverri et al., 1996), or for the 

microtubular network by nocodazole treatment, CLN3E295K and LAMP-1-positive 

compartments were observed to be dispersed into the cytoplasm (the original 

publication III, Figure 4). 

5.3.4 Effects of CLN3 and its mutants on Rab7 GTPase 

To further analyse late endosomal compartments in the context of juvenile CLN3 

disease, the effects of disease-associated CLN3 mutants on Rab7 GTPase were 

studied. Using confocal immunofluorescence microscopy, it was first determined 

whether CLN3E295K results in changes in the intracellular localisation of EGFP-

tagged Rab7 in HeLa cells. Compared to EGFP-Rab7- and CLN3/EGFP-Rab7-

transfected control cells (the original publication III, Figure 2C,C´ and 2G,G´,H,H´, 

respectively), EGFP-Rab7 in CLN3E295K/EGFP-Rab7-transfected cells (Figure 

2L,L´,M,M´) co-localised more efficiently on LEs/lysosomes, marked by CLN3 and 

LAMP-1-stainings. Quantitative analysis of the co-localisation between EGFP-Rab7 

and endosomal/lysosomal markers under each condition showed that in 

CLN3E295K-expressing cells, the co-localisation of EGFP-Rab7 with CLN3 and 

LAMP-1 was increased by approximately 20% compared to control cells (the 

original publication III, Figure 3). These findings imply that in addition to the 

steady-state position of LEs/lysosomes, CLN3 contributes to the 

compartmentalisation of Rab7. 

To test whether CLN3 deficiency affects functional GTP/GDP cycle of Rab7, 

control fibroblasts and CLN3 disease fibroblasts were transfected with EGFP-Rab7 

and analysed by FRAP analysis. Perinuclear clusters of EGFP-Rab7-positive 

compartments were photobleached and the recovery of EGFP fluorescence was 

monitored for 500 s. In the control fibroblasts, the recovery curve reached nearly 
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60% of initial fluorescence after 500 s. Juvenile CLN3 disease fibroblasts carrying 

compound heterozygous mutation (CLN3E295K/CLN3Δex7-8), did not show 

substantial differences in the EGFP recovery compared to the control cells (the 

original publication III, Figure 9A). Instead, the recovery was significantly faster in 

fibroblasts carrying the homozygous mutation. Homozygous patient cells showed ≥ 

50 % recovery already after 100 s and reached ≥ 80% recovery after 500 s (the 

original publication III, Figure 9A). Since the vesicular pattern of the recovering 

cells resembled the pattern before the photobleaching (shown for control cells and 

homozygous patient cells, the original publication III, Figure 9B), it was concluded 

that the recovery of the vesicular EGFP-Rab7 signal reflects recruitment of 

unbleached cytoplasmic Rab7 on endosomal/lysosomal membranes rather than the 

movement of unbleached Rab7-positive organelles. Therefore, these results suggest 

that the loss of CLN3 function in the lysosomal compartments (CLN3Δex7-8 

homozygous) lead to unbalanced GTP/GDP cycle of Rab7 and thus, could have a 

major effect on the function of Rab7. The observation that compound heterozygous 

(CLN3E295K/CLN3Δex7-8) cells did not show notably changes in the GTP/GDP 

cycle of Rab7 suggests that endogenously expressed lysosome-localised 

CLN3E295K mutant protein result in late endosomal/lysosomal abnormalities not 

captured by the FRAP experiment. 

Taken together, the findings that disease-associated CLN3 mutations affect the 

intracellular position of late endosomal/lysosomal compartments and Rab7 but also 

the functional cycle of Rab7, suggest that disturbed Rab7-associated functions may 

play a role in juvenile CLN3 disease. While the current study showed that 

LEs/lysosomes but not EEs are perinuclearly aggregated in both the CLN3E295K-

transfected HeLa cells and patient fibroblasts carrying two different mutation types 

(CLN3E295K/CLN3Δex7-8 or CLN3Δex7-8/CLN3Δex7-8), both early and late 

endosomal compartments were reported to be dispersed in Cln3Δex7-8 Cotman cerebellar 

neurons (Fossale et al., 2004). This implies that the changes in the vesicular 

distribution due to CLN3 deficiency may be dependent on the cell type. 

 

5.3.5 CLN3 is required for bi-directional late endosomal/lysosomal 
trafficking 

The following experiments were performed to analyse whether CLN3-deficiency 

results in defects in the endocytic pathways or in the outward movement of 

endosomal/lysosomal compartments. First, the uptake and recycling of biotinylated 

transferrin was examined in wild type and juvenile CLN3 disease patient fibroblasts 

(the original publication II, Figure 3). Second, later steps of the endocytic pathway 

in the patient fibroblasts were examined by analysing microscopically the trafficking 

of fluorescent low-density lipoprotein (BODIPY FL-LDL) to the EEA1 and LBPA-

positive early endosomal and late endosomal/lysosomal compartments, respectively 
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(the original publication II, Figure 4). Third, regarding the CLN3/kinesin-2 

interaction, it was also tested, using cytoplasmic acidification assay, whether CLN3-

silenced HeLa cells have defects in induced anterograde movement of LAMP-1-

positive LEs and lysosomes (the original publication III, Figure 5). 

In the uptake assay, biotinylated transferrin was bound to the cell surface of the 

fibroblasts on ice followed by internalisation at 37°C. The amount of intracellular 

biotin-transferrin at indicated time points at 37°C was then examined using enzyme-

linked immunosorbent assay (ELISA). No difference in the internalisation was 

observed between the patient and control fibroblasts (the original publication II, 

Figure 3A). To analyse the recycling rate of endocytosed transferrin in the 

fibroblasts, cells were first loaded with the biotinylated transferrin at 17°C for 2 

hours, which allowed transferring to reach the endosomes, and then incubated at 

37°C. The amount of remaining intracellular transferrin at indicated time points was 

then determined. Results from three independent experiments revealed that 

compared to the control cells, the recycling of biotin-transferrin was slightly 

increased in the juvenile CLN3 disease fibroblasts (the original publication II, 

Figure 3B). 

To examine the trafficking of endocytosed material in the degradative endocytic 

pathway, the patient and wild type fibroblasts, starved in lipoprotein-free medium 

overnight, were subjected to BODIPY FL-LDL internalisation for 30 min at 37°C 

and then, either fixed immediately or chased for 40 min or 2 h before processing for 

confocal immunofluorescence microscopy. Immediately after the uptake period, 

LDL in the control cells was found to localise both to EEA1-positive EEs (the 

original publication II, Figure 4A) and LBPA-positive LEs/lysosomes (the original 

publication II, Figure 4B) indicating that LDL had already reached the late 

endosomal compartments. In contrast, LDL in patient fibroblasts was mostly found 

in the EEA1-positive EEs and no co-localisation with the late endosomal marker 

was detected at this time point (the original publication II, Figure 4C and D, 

respectively). Instead, minor co-localisation between LDL and LBPA was detected 

after 2 h of chase indicating that LDL in the juvenile CLN3 disease cells reached the 

late endosomal compartments at the later time points (the original publication II, 

Figure 4E and F). These results indicate that the trafficking of endocytosed material 

to LEs/lysosomes is delayed in CLN3-deficient fibroblasts.  

Cytoplasmic acidification has been reported to induce the relocalisation of LEs 

and lysosomes from the cell center to the periphery (Heuser, 1989), and has been 

used to analyse kinesin-mediated organelle transport (Nakata and Hirokawa, 1995; 

Tanaka et al., 1998; Brown et al., 2005). In the current study, the cytoplasmic 

acidification assay was used to analyse anterograde movement of LAMP-1-positive 

LEs and lysosomes in HeLa cells transfected with control siRNAs (small interfering 

RNAs) or siRNAs against CLN3 sequence. siRNA-transfected cells were treated 

with Ringer´s solution pH 7.2 or with Ringer´s solution pH 6.9 to induce the 

relocalisation, and processed for immunofluorescence microscopy. Cells were 
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classified in three phenotypic categories based on the pattern of LAMP-1 

immunofluorescence staining (the original publication III, Figure 5A). Cells 

showing only perinuclear LAMP-1-positive compartments, with some dispersed 

vesicles, were classified as normal. Cells displaying loose peripheral clusters or tight 

peripheral clusters were classified as dispersed or extremely dispersed, respectively. 

In most of the control cells treated with Ringer´s, pH 7.2, LEs/lysosomes were 

already dispersed (the original publication III, Figure 5B). The percentage of cells 

with tight peripheral lysosomal clusters increased during incubation in a more acidic 

solution (pH 6.9), as expected (the original publication III, Figure 5B). Interestingly, 

relocalisation of LEs/lysosomes was less efficient in CLN3-silenced cells. 6% of 

CLN3siRNA-transfected cells treated with Ringer´s, pH 7.2, were classified with 

extremely dispersed LAMP-1-positive compartments, which was clearly less than in 

the respective control culture (18%). Moreover, CLN3-silenced cells incubated in 

the pH 6.9 solution showed significantly fewer cells with extremely dispersed 

LEs/lysosomes than the controls (41 vs. 69%) (the original publication III, Figure 

5B). These results suggest that CLN3 is required for the outward movement of LEs 

and lysosomes. 

The current study shows that CLN3-deficiency or reduced expression levels of 

CLN3 causes defects in the intracellular membrane trafficking, a finding later 

confirmed by several other studies. Indeed, trafficking abnormalities in several 

intracellular compartments have been detected in deficiency of CLN3 or its S. 
pombe orthologue, Btn1p. These include impaired Golgi protein sorting (Codlin and 

Mole, 2009) and exit of mannose 6-phosphate receptor from the trans-Golgi network 

(Metcalf et al., 2008), and defects in endocytosis (Fossale et al., 2004), fast axonal 

transport (Weimer et al., 2006) and LE – Golgi retrograde sorting (Kama et al., 

2011). However, no supportive protein interactions related to the trafficking of 

corresponding compartments were reported prior to this thesis study. This 

emphasises the significance of the current findings showing that CLN3 physically 

interacts with the proteins of late endosomal/lysosomal membrane trafficking. It is 

likely that the loss or disturbances in the interactions between CLN3 mutants and 

Rab7/RILP explain the observed defects in late endosomal/lysosomal functions. It is 

noteworthy that CLN3, as determined in this study, and associated proteins 

(dynactin, Rab7, RILP) have all been reported to affect dynein as well as kinesin-

dependent membrane trafficking and therefore, disturbed CLN3 interactions may 

equally, and apparently cell-type specifically, affect antero- and retrograde 

trafficking (Blangy et al., 1997; Deacon et al., 2003; Berezuk and Schroer, 2007; 

Pankiv et al., 2010). 
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5.4 A model for CLN3 interaction network 

Based on this thesis study and reports by others, the current functional interaction 
network of CLN3 consists of the following proteins: CLN5, calsenilin, SBDS, non-
muscle myosin IIB, GRP78/BiP, Na+, K+ ATPase, fodrin, Hook1, Rab7, RILP, 
dynactin, dynein, kinesin-2, and tubulin. A summary of CLN3 interactions identified 
in this study is presented in Table 8. 

Table 8. A summary of CLN3 interactions determined in the current study. 
Interacting domains, methods and putative functions are presented. 

Interactor  Domain 
CLN3 

domain 
Method Function of the interaction 

GRP78/BiP ? 232-280 GST pull-down, co-IP ? 

α1 ? ? co-IP 

β1 250-3031) 1-40 YTH, co-IP 

Na+,K+ 

ATPase 

β2 187-290 1-40 YTH 

regulation of plasma membrane-

association of Na+, K+ ATPase 

β-fodrin 
2265-

2364 

1-40 
YTH, co-IP 

regulation/maintenance of fodrin 

cytoskeleton 

Hook1 ?  GST pull-down 

β-tubulin ? ? co-IP 

kinesin-2 ? ? co-IP 

dynein ? ? co-IP 

dynactin ? ? co-IP 

Rab7 (direct) 
? 1-33,  

1-40 

co-IP, MTH, GST 

pull-down 

RILP (direct) ? 232-280 co-IP, GST pull-down 

movement of late 

endosomes/lysosomes 

1) In YTH, amino acid segments 88-303 and 158-303 were also positive.  
Abbreviations: GRP78/BiP, 78 kDa glucose-regulated protein/immunoglobulin heavy chain binding 
protein; RILP, Rab7-interacting lysosomal protein; co-IP, co-immunoprecipitation; GST, glutathione S-
transferase; MTH, mammalian two-hybrid; YTH, yeast two-hybrid. 

 
The CLN3-interacting proteins represent proteins of different intracellular 
compartments as well as partly unrelated functions. The complexity of CLN3 
interactome implies that CLN3 has several functions in multiple regions of the cell. 
Alternatively, the localisation and function of CLN3 may be conditional or even 
specific to certain cell types. Based on its protein interactions, the functions of 
CLN3 affect at least endosomal and lysosomal compartments, the plasma membrane 
and associated cytoskeleton, and putatively ER (Figure 9). CLN3 may interact with 
other proteins either during its trafficking to lysosomes or after its intracellular 
relocalisation in response to a certain stimulus. Fodrin, Na+, K+ ATPase, non-muscle 
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myosin IIB and putatively GRP78/BiP represent plasmalemmal or plasma 

membrane-associated cytoskeletal interactions of CLN3. Therefore, in order to 

interact with them CLN3 has to localise in the dynamic endosomal/lysosomal 

compartments close to the plasma membrane or alternatively at the plasma 

membrane (Figure 9). Most of the other interactions of CLN3 most likely occur at 

the late endosomal/lysosomal compartments (Figure 9). 

Although fodrin and Na+, K+ ATPase are known to interact with each other, the 

hierarchy of the associated CLN3 interactions can not be defined by the methods 

employed in the current study. CLN3 may affect fodrin and Na+, K+ ATPase either 

separately or alternatively, via a physical CLN3-fodrin- Na+, K+ ATPase complex. 

Although the plasma membrane-associated spectrin skeleton has been suggested to 

function in endocytosis (Williams et al., 2004; Phillips and Thomas, 2006), it is 

likely, based on the transferrin uptake studies (the original publication II), that the 

CLN3/fodrin interaction is not involved in the general internalisation of endocytic 

material but rather contributes to other functions of the plasma membrane-associated 

spectrin cytoskeleton. Fodrin is rather poorly characterised in mammalian central 

nervous system. However, it has been associated with synaptic transmission, fast 

axonal transport and neurite extension (Sobue and Kanda, 1989; Sikorski et al., 

1991; Sihag et al., 1996; Riederer and Routtenberg, 1999; Takeda et al., 2000; 

Zimmer et al., 2000). Fodrin has no exact orthologue in Drosophila and C. elegans, 

which contain a far more simple battery of spectrin proteins (McKeown et al., 1998; 

Thomas et al., 1998; Adams et al., 2000; Hammarlund et al., 2000). Nevertheless, 

studies in these lower organisms suggest that plasma membrane associated spectrin 

is required for the prevention of spontaneous breaks in mature neuronal processes 

(Hammarlund et al., 2007), axon guidance/pathfinding (Garbe et al., 2007; 

Hulsmeier et al., 2007), synapse stabilisation (Pielage et al., 2005; Pielage et al., 

2006) and organisation of synaptic components required for neurotransmitter release 

(Featherstone et al., 2001). Some of these intracellular events have also been linked 

to CLN3 (see Chapters 2.3.3, 2.4.4, 2.4.5) suggesting a possible role for CLN3-

fodrin interaction in these processes and thus, in the pathogenesis of juvenile CLN3 

disease. 
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Figure 9. A schematic model of CLN3 interactions. CLN3 interacts with lysosomal 
lumenal proteins (CLN5), cytoplasmic proteins (calsenilin, SBDS), and plasma membrane 
(PM) proteins (Na

+
, K

+
 ATPase). Furthermore, CLN3 is associated with three cytoskeletal 

compartments: actin (via myosin IIB), fodrin, and microtubules (via motor protein 
complexes). The direct interaction between CLN3 and Rab7 effector complexes further 
highlights the role of CLN3 in microtubule-based movement of vesicles/organelles. Some 
of the figure components were produced using Servier Medical Art (www.servier.com). 
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Loss of CLN3 was shown to affect ouabain-induced endocytosis of Na+, K+ ATPase 

(the original publication I), which may have consequences on the activities of the 

protein in intracellular signalling, apoptosis and calcium oscillations (reviewed in 

Aperia, 2007; Tian and Xie, 2008; Lingrel, 2010). Interestingly, Na+, K+ ATPase 

also regulates neurotransmission through AMPA receptor turnover (Rose et al., 

2009; Zhang et al., 2009) and it is possible that disruption of CLN3- Na+, K+ 

ATPase interaction is the basis for the AMPA-mediated excitotoxicity observed in 

juvenile CLN3 disease mouse models (Kovacs et al., 2006; Finn et al., 2011). 

Furthermore, the interaction may also be important for Na+, K+ ATPase activities in 

the heart and kidney as these organs are also affected in juvenile CLN3 disease 

(Stein et al., 2010; Ostergaard et al., 2011). 

Most importantly, this study suggests that CLN3 and possibly Hook1 represent 

previously unidentified Rab7 effectors and thus may have pivotal roles regarding 

lysosomal functions. Further studies are needed to determine exactly how many 

separate protein complexes CLN3 forms with Hook1, Rab7, RILP, dynactin, dynein, 

kinesin-2 and tubulin and whether Hook1 associates with Rab7 and CLN3 in the 

same molecular complex. However, since over-expression of CLN3 induces 

aggregation of Hook1 and inability of the protein to co-immunoprecipitate with 

CLN3 (the original publication II), it is likely that Hook1 is not required for the 

interaction between CLN3 and Rab7. Instead, Hook1 may compete with CLN3 for 

binding to Rab7. The finding that CLN3 interacts with Rab7 and RILP, as well as 

with dynein-dynactin suggests that CLN3 associates with the Rab7-RILP-ORP1L 

dynein-dynactin activator complex. Rab7 and ORP1L also participate in the plus-

end directed microtubular transport of autophagic vesicles in a manner uncoupled by 

RILP expression (Pankiv et al., 2010). Therefore, it is possible that Rab7 (and 

ORP1L) is also involved in the CLN3-kinesin-2-containing complex. Therefore, 

interactions of CLN3 with the components of late endosomal/lysosomal trafficking 

may involve at least the following protein complexes; CLN3-Hook1, CLN3-Rab7-

RILP-ORP1L-dynein-dynactin and CLN3-Rab7-ORP1L-kinesin-2-dynactin (Figure 
9).  

Further studies are also needed to elucidate the consequences of impaired CLN3-

Rab7 interaction in neurons. It would be interesting to study whether CLN3 

deficiency affects Rab7-mediated axonal retrograde trafficking of neurotrophins and 

associated neurite outgrowth as well as maturation and transportation of neuronal 

autophagic vesicles. Interestingly, kinesin-2 has been shown to transport fodrin-

associated vesicles (Takeda et al., 2000), thus, providing an unexpected connection 

between the two CLN3 interacting proteins, fodrin and kinesin-2. The transport of 

fodrin-containing vesicles by kinesin-2 has also been suggested to be important for 

neurite growth and the role of fodrin in this process is either to act as a linker protein 

between kinesin and cargo vesicle or to provide membraneous/cytoskeletal 

components essential for neurite extension (Takeda et al., 2000). 



Results and discussion 

 

THL — Research 82/2012 91 Molecular Interactions of Neuronal 
Ceroid Lipofuscinosis Protein CLN3 

 

As a summary, neurite growth and neurite morphology are a common theme 

between CLN3 and its interaction partners (fodrin, kinesin-2, Rab7 and non-muscle 

myosin IIB) (Takeda et al., 2000; Tullio et al., 2001; Saxena et al., 2005; Ryu et al., 

2006; Weimer et al., 2009). Therefore, it is plausible to argue that at least these 

processes are disturbed in juvenile CLN3 disease due to loss of functional CLN3 

interactions. 

Taken together, several important intracellular processes may be dysfunctional 

due to mutated CLN3. However, only fraction of the defects may be causative to 

disease. It is also possible that some of the defects may affect organs not equally 

sensitive to CLN3 deficiency as the central nervous system. 
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6 Conclusions and future prospects 

In this thesis study, CLN3 functions and neurodegenerative juvenile CLN3 disease 

were investigated at a molecular level by studying CLN3-interacting proteins. The 

major findings of this study include 1) the determination of several previously 

unidentified CLN3 interactions with Na+, K+ ATPase, fodrin, GRP78/BiP, Hook1, 

Rab7, RILP, dynactin, dynein, kinesin-2, and tubulin, 2) putative structural 

abnormalities of neuronal fodrin cytoskeleton caused by CLN3 deficiency, 3) the 

connection of CLN3 to regulation of ouabain-dependent non-pumping functions of 

Na+, K+ ATPase in neurons, and 4) observations that CLN3 is required for the 

correct intracellular positioning of late endosomes/lysosomes, the trafficking of 

endocytosed material to late endosomal/lysosomal compartments, microtubule plus 

end-directed movement of late endosomes and lysosomes, and balanced functional 

cycle of Rab7. Together with the observed protein interactions, the latter findings 

strongly indicate that CLN3 regulates the movement and possibly, the membrane 

fusion of late endosomes and lysosomes.  

In addition to juvenile CLN3 disease, this study provides clues to the 

pathogenesis of other NCLs and neurodegenerative disorders, as similar diseases 

may share defects in the same and/or functionally related intracellular pathways. 

Furthermore, interaction analyses of CLN3 provide candidates for potential 

modifiers of phenotypes associated with CLN3 or any other NCL protein and 

therefore, may contribute to better understanding of clinical variation in disease 

manifestation. 

In terms of CLN3 and results of this thesis work, it would be essential to study 

the observed CLN3 interactions and associated intracellular events in neuronal cells. 

Followed by validation of the interactions in neurons, preferably done by in vivo 

methods, functional connections could be confirmed and further dissected utilising, 

for example, single and double mutant Drosophila models, as well as siRNA and 

high-content screening applications performed with mammalian neurons. 

Urged by “the era of a genome”, the current biological research is moving 

forward with one of the main focus being interactome mapping. Due to huge amount 

of protein interactions, and especially, due to the fact that interactions may form 

very complex networks in which binary interactions are linked to each other through 

indirect interactions forming “co-complex” interactome network (De Las Rivas and 

Fontanillo, 2010), design and development of more efficient large-scale interaction 

analysis tools are essential. Peptide microarray is one of the state-of-the-art 

technologies, and will revolutionise our vision on protein interaction analysis. 

Together with the current generally available high-throughput technologies, 

including tandem affinity purification-mass spectrometry (TAP-SM), traditional 

yeast-two hybrid analysis, and more sensitive in vivo methods such as fluorescence 
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resonance energy transfer (FRET), proximity ligation assay, and other fluorescence-

based interaction detection methods, and in silico analysis tools, the peptide 

microarray analyses will speed up the mapping of the protein interactomes and 

pathways critical for human diseases. 
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