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ABSTRACT 

Dioxins are a group of environmental contaminants that raise concern because of their 
potency, widespread presence and persistence within the food chain. 2,3,7,8-
Tetrachlorodibenzo-p-dioxin (TCDD) and other dioxins bring about a wide variety of 
biochemical and toxic effects, most of which are mediated by the AH receptor (AHR). The 
AHR functions as a ligand-activated transcription factor and binds to DNA as a 
heterodimeric complex with the AHR nuclear translocator (ARNT) or its homologue in the 
brain, ARNT2. The AHR repressor (AHRR) negatively regulates the dioxin signalling by 
competing with AHR for dimerizing with ARNT. All these principal proteins in dioxin 
signal transduction, AHR, ARNT and AHRR, belong to the bHLH/PAS superfamily of 
transcriptional regulators. 

A characteristic feature of TCDD toxicity is its wide variation in sensitivity among animal 
species and strains, which complicates dioxin risk assessment. For the guinea pig, TCDD is 
the most toxic synthetic compound known, while the resistant hamster tolerates over 1000-
fold higher doses. A similar difference exists between two rat strains, the sensitive Long-
Evans (Turku A/B) (L-E) and the resistant Han/Wistar (Kuopio) (H/W). Cloning of H/W rat 
AHR revealed changes in the structure of C-terminal transactivation domain, which 
appeared to be the principal reason for TCDD resistance in H/W rats. Because the reason 
for sensitivity difference between hamsters and guinea pigs was unknown, their AHRs were 
cloned. Sequencing of hamster AHR revealed a restructured transactivation domain as 
compared with that in guinea pigs. The results imply that AHR structure, especially in the 
C-terminal transactivation region, may be an important or even crucial factor to the 
sensitivity differences in TCDD toxicity.  

Although the AHR appears to be the major reason for TCDD resistance in H/W rats, there 
is also another, currently unknown factor involved. Therefore, the primary structures of the 
ARNT, ARNT2 and AHRR were compared between L-E and H/W rats to determine 
whether some of these proteins could be this auxiliary factor participating in the strain-
specific differences in TCDD toxicity. The AHRR gene had not been cloned earlier in rats, 
and thus its time-, dose- and tissue-dependent expression was also determined using 
quantitative RT-PCR. However, no marked differences were found between H/W and L-E 
rats in the structure or expression of ARNT, ARNT2 or AHRR, suggesting that these 
bHLH/PAS proteins do not contribute to strain differences in TCDD sensitivity. Moreover, 
several novel splice variants were discovered in the structures of ARNT and ARNT2, but 
none of these variants appeared to be related to TCDD resistance in this rat model. 

The effects of TCDD on the hypothalamic expression of several genes encoding 
bHLH/PAS proteins participating in dioxin signal transduction and possibly in wasting 
syndrome were also determined using quantitative RT-PCR. The wasting syndrome is a 
TCDD-induced response that shows a clear sensitivity difference between L-E and H/W 



  

rats. However, although some minor changes were detected, they may not account for the 
wasting syndrome.  

Thus, among all the studied proteins involved in dioxin signal transduction, only the 
structure of the AHR stood out as an essential determinant of dioxin sensitivity in the rat 
model. The AHR structure also appeared to be a critical factor in the species model. 
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TIIVISTELMÄ 

Dioksiinit ovat ympäristösaasteita, jotka herättävät yleistä huolestuneisuutta 
voimakkuutensa, levinneisyytensä ja ravintoketjussa pysyvyytensä takia. 2,3,7,8-
Tetraklooridibentso-p-dioksiinilla (TCDD) ja muilla dioksiineilla on suuri määrä erilaisia 
biokemiallisia ja toksisia vaikutuksia, joista suurin osa välittyy AH-reseptorin (AHR) 
kautta. AHR on ligandeilla aktivoituva transkriptiofaktori ja se sitoutuu DNA:han 
heterodimeerisenä kompleksina ARNT- tai ARNT2-proteiinin kanssa. AHR-repressori 
(AHRR) säätelee negatiivisesti dioksiinien signaalinvälitystä kilpailemalla AHR:n kanssa 
ARNT:iin sitoutumisesta. Kaikki nämä keskeiset dioksiinien signaalinvälitykseen 
osallistuvat proteiinit kuuluvat transkriptionaalisten säätelijöiden muodostamaan 
bHLH/PAS proteiiniperheeseen. 

TCDD:n toksisille vaikutuksille luonteenomaisia ovat suuret herkkyyserot eri eläinlajien ja 
kantojen välillä, mikä hankaloittaa dioksiinien riskinarviointia. Marsu on erittäin herkkä 
TCDD:n toksisille vaikutuksille, kun taas hamsteri kestää yli 1000-kertaa suurempia 
TCDD-annoksia. Samansuuruinen herkkyysero löytyy kahden rottakannan, herkän Long-
Evans-rotan (Turku A/B) (L-E) ja kestävän Han/Wistar-rotan (Kuopio) (H/W) väliltä. 
Pääasiallisin syy H/W-rottien dioksiinikestävyyteen ovat muutokset AHR:n karboksi-
terminaalisen transaktivaatioalueen rakenteessa. Koska syytä hamsterin ja marsun väliseen 
herkkyyseroon ei tiedetty, niiden AHR:t kloonattiin. Myös hamsterin AHR:n 
transaktivaatioalueen rakenteesta löydettiin poikkeavuutta marsun AHR:n rakenteeseen 
verrattuna. Näiden kloonaustöiden tulokset korostavat AHR:n rakenteen ja erityisesti sen 
C-terminaalisen transaktivaatioalueen rakenteen merkitystä dioksiinitoksisuuden 
herkkyyseroissa.  

Vaikka AHR näyttää olevan merkittävin syy H/W-rottien dioksiinikestävyyteen, myös 
toinen, tällä hetkellä tuntematon tekijä vaikuttaa siihen. Siksi ARNT:n, ARNT2:n ja 
AHRR:n primäärirakenteita verrattiin H/W- ja L-E –rottien välillä, jotta saataisiin selville, 
voisivatko nämä proteiinit osaltaan selittää kantojen välillä olevia herkkyyseroja. AHRR-
geeniä ei oltu aiemmin kloonattu rotalta ja siksi myös sen aika-, annos- ja kudosspesifisiä 
vasteita määritettiin kvantitatiivistä PCR:ää käyttäen. Tulokset eivät kuitenkaan osoittaneet 
eroja ARNT:n, ARNT2:n ja AHRR:n rakenteessa tai ilmentymisessä, mistä voitiin päätellä, 
etteivät nämä proteiinit ole osasyynä rottakantojen väliseen herkkyyseroon. Sen sijaan 
ARNT:n ja ARNT2:n rakenteista löydettiin useita uusia rakennevaihteluita, mutta minkään 
niistä ei havaittu liittyvän TCDD-resistenttiyteen. 

TCDD:n vaikutusta useiden bHLH/PAS-proteiineja koodittavien geenien ilmentymiseen 
rotan hypothalamuksessa tutkittiin kvantitatiivisella RT-PCR:llä. Tutkittavaksi valittiin 
geenejä, jotka osallistuvat dioksiinien signaalinvälitykseen ja mahdollisesti dioksiinien 
aiheuttamaan näivetysoireyhtymään, jossa myös on selvä herkkyysero L-E- ja H/W-rottien 
välillä. Vaikka tutkimuksessa havaittiinkin joitakin pieniä muutoksia näiden rottakantojen 
välillä, mitkään niistä eivät olleet riittäviä selittämään herkkyyseroa näivetysoireyhtymässä.  



  

Yhteenvetona voidaan todeta, että kaikkien tutkittujen, dioksiinien signaalinvälitykseen 
osallistuvien proteiinien joukossa ainoastaan AHR:n rakenteella näyttää olevan merkitystä 
dioksiiniherkkyyden määrittelijänä rottamallissamme. AHR:n rakenne lienee kriittinen 
tekijä myös eri eläinlajien välisissä herkkyyseroissa. 
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1 INTRODUCTION 

 

Humans and most animals are exposed daily to a number of chemicals in the air, water or 
food. One class of these chemicals are the environmental contaminants, specifically dioxins 
and related halogenated aromatic hydrocarbons (HAHs). This group of chemicals raises 
concern because of their potency, widespread presence in the environment and persistence 
within the food chain. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most famous and 
most toxic dioxin.  

Dioxins bring about a wide spectrum of biochemical and toxic effects, including 
reproductive and developmental defects, immunotoxicity, thymus atrophy, chloracne, 
wasting syndrome, liver toxicity and cancer (Pohjanvirta and Tuomisto, 1994). Practically 
all of these effects are mediated via the aryl hydrocarbon receptor (AHR), which is a ligand-
activated transcription factor (Okey et al., 1994). The AHR regulates the expression of 
target genes by heterodimerizing with ARNT, the AH receptor nuclear translocator and then 
interacting with dioxin response elements (DREs, also known as xenobiotic responsive 
elements [XREs] or aryl hydrocarbon responsive elements [AHREs]) in DNA (Whitlock, 
1999). The AHR mediates not only the toxic effects of dioxins but also the adaptive effects, 
including the induction of many xenobiotic metabolizing enzymes such as cytochrome 
P4501A1 (CYP1A1) (Nebert et al., 2004).  

One characteristic feature of TCDD toxicity is its wide variability in sensitivity between 
strains and species, which complicates dioxin risk assessment. In our laboratory, a 1000-fold 
sensitivity difference to acute lethality of TCDD was established between sensitive Long-
Evans (Turku/AB) (L-E) and resistant Han/Wistar (Kuopio) (H/W) rat strains (Pohjanvirta 
and Tuomisto, 1994). The reason for TCDD resistance in H/W rat was found to be in the 
AHR, which had an abnormal carboxyterminal (C-terminal) transactivation domain due to a 
critical point mutation (Pohjanvirta et al., 1998; Tuomisto et al., 1999). Despite the 
restructured AHR some endpoints of dioxin toxicity, such as induction of CYP1A1, are 
similar between these rat strains (Pohjanvirta et al., 1988). However, the deleted 
transactivation domain of H/W AHR affects the expression of those target genes that are the 
key to dioxin toxicity, such as wasting syndrome and acute TCDD lethality. Therefore, our 
rat model is useful not only in studying dioxin sensitivity differences but also in elucidating 
the molecular mechanisms of dioxin toxicity.  

Another interesting animal pair used in dioxin sensitivity studies is hamster and guinea pig, 
which show the same kind of sensitivity difference in acute lethality of TCDD to that 
occurring between L-E and H/W rats (Pohjanvirta and Tuomisto, 1994). Although TCDD-
resistant hamsters and H/W rats are known to share selective responsiveness to TCDD, it is 
not known whether their resistance is based on a similar phenomenon. In the present study, 
these two animal pairs were utilized to elucidate the mechanisms determining the 
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exceptionally large differences present among species and strains in sensitivity to TCDD 
toxicity. Moreover, this study addressed the question of whether other principal proteins in 
dioxin signal transduction, in addition to AHR, could be potential factors involved in dioxin 
sensitivity differences. 
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2  REVIEW OF THE LITERATURE  
 

2.1  Dioxins 
 
2.1.1 Background 

 Dioxins (polychlorinated dibenzo-p-dioxins) and related HAHs (e.g. dibenzofurans and 
dioxin like polychlorinated biphenyls [PCBs]) are ubiquitous and persistent environmental 
contaminants. Their potential hazard to humans and animals is increased by the fact that 
they are fat-soluble and thus tend to bioaccumulate in tissue lipids and in the food chain. 
TCDD is a prototype of dioxins (Fig.1). It is the most potent of the halogenated 
environmental organic pollutants and thus often called the most toxic synthetic compound.  

 

Figure 1. The structure of TCDD  

 

TCDD was introduced as a toxic compound to the general public most notably by an 
industrial accident in Seveso, Italy in 1976. Due to an explosion in a chemical plant 
producing trichlorophenol, a toxic cloud containing large quantities of TCDD was released 
to the environment. Many domestic and wild animals were killed, but no life-threatening 
health effects were reported among the thousands of exposed inhabitants; only a few 
hundred chloracne cases were observed during the period of acute exposure (Bertazzi et al., 
1998; Mocarelli, 2001). TCDD was classified as a human carcinogen (Group I) by the 
International Agency for Research on Cancer (IARC) of the World Health Organization 
(WHO) (IARC, 1997). However, this classification, based on limited evidence of 
epidemiologic studies, has been somewhat controversial and was both challenged and 
supported in the literature (Cole et al., 2003; Steenland et al., 2004). 

The term dioxin refers to a large family of compounds thought to have similar mechanisms 
of toxicity. Nevertheless, their toxicities vary greatly and to facilitate the risk assessment of 
these complex mixtures the concept of toxic equivalency factors (TEFs) was developed by 
the WHO (van den Berg et al., 1998, 2000; Finley et al., 2003). The TEF values for each 
dioxin congener was evaluated in relation to the most toxic congener, TCDD. In the 
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mixture, the measured concentration of each congener is multiplied by its TEF value 
[= toxic equivalent (TEQ) for this congener]. The sum of all these component TEQs gives 
the total toxicity of the mixture in TEQs (van den Berg et al., 1998).  

While dioxins have never been intentionally manufactured for purposes other than scientific 
research, they are formed as unwanted by-products during industrial production of some 
chemicals such as chlorophenols and phenoxyacetic acid herbicides. For example, herbiside 
2,4,5-trichlorophenoxyacid (2,4,5-T), which was used as an antifoliant agent (Agent 
Orange) during the Vietnam War, contained TCDD at relatively high concentrations 
(Michalek et al., 1996). Dioxins are also formed when organic compounds are burned 
incompletely in the presence of chlorine. In fact, the current major source of dioxin in the 
environment comes from combustion processes, such as metal smelting and refining as well 
as waste-burning incinerators of various sorts (e.g. municipal, hazardous and hospital waste) 
and also backyard burn-barrels. From all these sources, dioxins are released into air, land 
and water (Hays and Aylward, 2003).  

Food is the major source of human exposure to dioxins, especially fatty foods. In central 
Europe, the main sources are dairy products and meat, while in Finland most of the 
exposure comes from fish and fish products. In particular, Baltic herring alone accounts for 
52% of the total intake (Kiviranta et al., 2001, 2004). Currently, the average daily intake of 
dioxins is about 1-2 pg/kg/day in most European countries. This is the actual or lower level 
that most authoritative agencies and scientific organizations have considered as a tolerable 
daily intake level (1-4 pg/kg/day) (Hays and Aylward, 2003). On the other hand, the United 
States Environmental Protection Agency (USEPA) suggested that even far lower levels may 
pose a significant health risk (USEPA, 2000). Although TCDD emissions and consequently 
TCDD intake levels have dramatically decreased over the past 30 years, the body burdens of 
dioxins do not change as rapidly due to the relatively long elimination half-life of TCDD 
(Päpke, 1998; Aylward and Hays, 2002).  

 

2.1.2 Effects in humans and experimental animals 

TCDD produces a variety of adverse biological responses in laboratory animals, including 
immunotoxicity, reproductive and endocrine effects, developmental toxicity, lethality, 
wasting, liver toxicity, teratogenesis, tumour promotion and cancer (Birnbaum, 1994; 
Pohjanvirta and Tuomisto, 1994; Birnbaum and Tuomisto, 2000). Nevertheless, the toxic 
responses to TCDD are dependent on many factors, such as exposure dose, age, sex, animal 
strain and species, target organs and cell types. For example, female rats are twice as 
sensitive to acute lethality of TCDD as male rats (Pohjanvirta et al., 1993). However, there 
is strong evidence to suggest that practically all TCDD-induced responses are mediated via 
the AHR.  
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TCDD is one of the most anorexigenic compounds known. In rats, even a single sublethal 
dose of TCDD may lead to a rapid decline in feed intake and bring about a long-lasting or 
even permanent retardation of body weight gain. At lethal doses, TCDD elicits a precipitous 
and striking body weight loss. This wasting syndrome mainly results from hypophagia, but 
the exact mechanisms of wasting are still unknown (Seefeld et al., 1984a, b; Pohjanvirta and 
Tuomisto, 1994; Tuomisto et al., 2000).  

TCDD can also result in adaptive effects, one of which is the induction of xenobiotic-
metabolizing enzymes catalysing the metabolic processing of lipophilic chemicals to water-
soluble derivatives and thereby facilitating their elimination (Whitlock, 1999; Nebert et al., 
2004). TCDD itself is poorly metabolized and thus it can cause chronic, sustained induction 
of CYP1A1, CYP1A2 and CYP1B1 leading to oxidative stress (Shertzer et al., 1998; Nebert 
et al., 2000). Oxidative stress following TCDD exposure has been demonstrated to increase 
the production of reactive oxygen species, lipid peroxidation and DNA damage (Slezak et 
al., 2000; Hassoun et al., 2001, 2002). Thus, the toxic effects of TCDD may be caused by 
induction of oxidative stress (Hassoun et al., 2000, 2001, 2002). On the other hand, 
induction of oxidative metabolic processes by TCDD may cause the production of highly 
carcinogenic metabolites of polycyclic aromatic hydrocarbons (PAHs) and oestrogens, 
creating a link between AHR activation and chemical carcinogenesis (Shimizu et al., 2000). 

Epidemiological studies in accidentally exposed populations have suggested a possible link 
between TCDD and certain types of cancer, cardiovascular disease, diabetes, decreased 
male/female ratio of births, endometriosis and dental defects (Mocarelli et al., 2000; 
Bertazzi et al., 2001; Eskenazi et al., 2002; Warner et al., 2002; Pesatori et al., 2003; Akhtar 
et al., 2004; Alaluusua et al., 2004). However, in Seveso the only verified effect of dioxin 
exposure has been chloracne, but the long-term follow up of this population is still 
continuing (Caramaschi et al., 1981). In the highly exposed Seveso population, elevated 
plasma levels of TCDD are still present because of the long biological half-life of TCDD 
(Landi et al., 2003; Baccarelli et al., 2004).  

The most sensitive effects of TCDD observed in experimental animals appear to be 
developmental, including effects on the developing immune, nervous and reproductive 
systems (Birnbaum and Tuomisto, 2000; Greene et al., 2003). The endocrine system is also 
one of the critical targets for dioxins (Birnbaum and Fenton, 2003).   
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2.2  AH receptor 

The AHR mediates most of the biochemical and toxic effects of dioxins and related 
aromatic hydrocarbons. About 30 years ago it was first discovered in mouse liver, where it 
was found specifically and with high affinity to bind to the radiolabelled analogue of TCDD 
(Poland et al., 1976). Since that time, the mechanisms of AHR action and its connections 
with the toxic responses of TCDD have been studied extensively. As a ligand-activated 
nuclear receptor, the AHR plays a role in regulation of cytochrome P450 (CYP) genes 
(Honkakoski and Negishi, 2000), and so far the best-characterized AHR-mediated pathway 
is the induction of CYP1A1 (Whitlock, 1999).  

The structure of AHR required years to resolve due to the instability of the receptor protein 
and low levels of expression. Biochemical purification of the AHR protein succeeded only 
after development of a photoaffinity-labelled ligand (Poland et al., 1986; Perdew and 
Poland, 1988; Okey et al., 1989). The sequence information of purified AHR protein was 
then used to clone the cDNA (Burbach et al., 1992; Ema et al., 1992). Later on, AHR 
cDNAs were cloned from several animals, including mammals, birds, fish and some 
invertebrates (Hahn, 2002).  

The AHR is present in a wide variety of tissues. In the adult rat, AHR mRNA was expressed 
at the highest levels in lung, thymus, kidney and liver, while lower levels were expressed in 
heart and spleen (Carver et al., 1994). In humans, placenta was reported to exhibit the 
highest expression, but high expression levels have also been detected in lung, heart, 
pancreas and liver, with lower levels of expression found in brain, kidney and skeletal 
muscle (Dolwick et al., 1993a).   
 

2.2.1 Structure of the AHR 

The AHR was earlier thought to belong to the steroid receptors because of some functional 
similarities (Evans, 1988). However, the molecular cloning of AHR cDNA revealed that it 
belongs to the basic helix-loop-helix/PER-ARNT-SIM (bHLH/PAS) superfamily, which is a 
group of structurally related proteins playing roles in detection of and adaptation to 
environmental change. One of the first members (cloned one year before the AHR) was the 
ARNT, which acts as a dimerization partner of the AHR (Hoffman et al., 1991). Other 
founding members were PER (product of the Drosophila Period gene) and SIM (product of 
the Drosophila Single-minded locus), which shares a highly conserved PAS domain, named 
subsequently after these first three members (PER, ARNT, SIM) (Gu et al., 2000; Kewley et 
al., 2004).  

The AHR, similarly to other bHLH/PAS proteins, has a conserved aminoterminus (N-
terminus). The bHLH domain located nearest the N-terminus binds DNA and promotes 
dimerization with the ARNT. The PAS domain affords specificity for dimerization and also 



 

21  

contains most of the ligand-binding domain (LBD) (Fukunaga et al., 1995; Pongratz et al., 
1998). In addition, both the bHLH and PAS domains are responsible for interaction with the 
90-kDa heat shock protein (hsp90) (Antonsson et al., 1995) (Fig. 2).  

The N-terminal end also contains signals for both the nuclear localization (NLS) and the 
nuclear export signals (NES) (Ikuta et al., 1998). Using these two signals the AHR shuttles 
between the cytoplasm and the nucleus of the cell (Ikuta et al., 2000). A recent report 
suggests that the NLS is required for AHR-regulated biology, because mice carrying a 
mutation in the NLS of the Ahr gene were resistant to TCDD-induced toxicity, as are Ahr 
knockout mice (Bunger et al., 2003). 

The C-terminal end of the AHR is not conserved among bHLH/PAS proteins. This variable 
region contains a potent transactivation domain composed of several interacting subdomains 
(Reen et al., 2002). One of the most important subdomains in this regard is a glutamine-rich 
(Q-rich) region (Jain et al., 1994; Fukunaga et al., 1995). In some in vitro studies, it 
exhibited the strongest transcriptional activity of several activation subdomains studied 
(Sogawa et al., 1995a). In addition, the Q-rich subdomain is necessary and sufficient for in 
vitro interaction with the AHR coactivators receptor interacting protein 140 (RIP140) and 
steroid receptor coactivator-1 (SRC-1) (Kumar and Perdew, 1999; Kumar et al., 1999). 
Furthermore, the retinoblastoma tumour suppressor protein (Rb) interacts with the Q-rich 
subdomain (Ge and Elferink, 1998). 

 

Figure 2. Domain structure of the AHR [modified from Denison et al. (2002)].  

 

The 5’-flanking region of the AHR gene contains no TATA box, but instead multiple GC 
boxes near the transcription initiation sites. Comparison of human and murine AHR 
promoters revealed several conserved regions containing binding sites for transcription 
factors, such as Sp1 (Schmidt et al., 1993; Eguchi et al., 1994; Mimura et al., 1994; 
Garrison and Denison, 2000; Racky et al., 2004).  
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2.2.2 Mechanism of action 

In the absence of a ligand, the AHR is found in the cytoplasm as a complex with two 
molecules of hsp90, the immunophilin like X-associated protein 2 (XAP2, known also as 
ARA9 or AIP1) and some other proteins such as p23 (Fig. 3) (Kazlauskas et al., 1999, 2000; 
Meyer and Perdew, 1999; Petrulis and Perdew, 2002). In this complex, hsp90 is important 
for maintaining the receptor in a conformation exhibiting high affinity for ligand binding 
and repressed DNA-binding ability (Pongratz et al., 1992; Whitelaw et al., 1995). XAP2 
binds to both hsp90 and the AHR and appears to stabilize the complex. It was also 
implicated in regulation of the intracellular localization of the AHR, in protection of the 
receptor against degradation and in repression of its transcriptional activity (Ma and 
Whitlock, 1997; Meyer and Perdew, 1999; Kazlauskas et al., 2000, 2002; Petrulis et al., 
2003; Hollingshead et al., 2004). p23 appears to stabilize the AHR-hsp90 complex in a 
ligand-inducible form (Kazlauskas et al., 1999). There are also suggestions that some 
auxiliary cochaperones, such as p60 and hsp70, may associate with this complex, but neither 
their presence nor functional role is yet clear (Nair et al., 1996; Petrulis and Perdew, 2002).  

Ligands for the AHR are thought to enter cells by simple diffusion and to bind to the PAS B 
domain. Ligand binding induces a conformational change in the receptor exposing the NLS 
(Lees and Whitelaw, 1999; Henry and Gasiewicz, 2003; Ikuta et al., 2004). The AHR 
complex then translocates into the nucleus, dissociates from its partner molecules and 
heterodimerizes with the ARNT (Probst et al., 1993; McGuire et al., 1994; Denison and 
Nagy, 2003). Formation of the AHR-ARNT heterodimer converts the complex to its high-
affinity DNA-binding form (Kronenberg et al., 2000). This complex binds to its specific 
DNA recognition site (DRE), located upstream of the target genes, such as CYP1A1 
(Denison et al., 1988, 1989; Whitlock, 1999). The DRE is composed of two half-sites, TNG 
and GTG, recognized by the AHR and ARNT, respectively (Denison et al., 1988; Swanson 
et al., 1995). The gene activation involves DNA bending, nucleosomal disruption and 
interaction with some transcription factors and coactivators/corepressors (Rowlands et al., 
1996; Nguyen et al., 1999; Garrison et al., 2000; Beischlag et al., 2002; Wang et al., 2004). 
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Figure 3. Mechanism of transcriptional activation by AHR and negative feedback 
regulation of AHR by AHRR. 

 

The aryl hydrocarbon receptor repressor (AHRR), also a member of the bHLH/PAS family, 
is a negative regulator of the AHR, competing with it for formation of a heterodimer with 
the ARNT (Mimura et al., 1999; Karchner et al., 2002). The ARNT-AHRR complex is 
capable of binding to DRE, but not of transactivating genes. The AHRR itself is induced by 
AHR ligands, and thus the AHR and AHRR form a regulatory feedback loop in the AHR 
signal transduction pathway (Mimura and Fujii-Kuriyama, 2003).  

Another mechanism by which the AHR can be down-regulated is degradation. The TCDD-
induced degradation is ubiquitin-mediated and occurs via the 26S proteasome pathway 
following nuclear export of AHR (Roberts and Whitelaw, 1999; Ma and Baldwin, 2000; 
Swanson, 2002). This agonist-dependent degradation may protect cells from the 
consequences of prolonged exposure to high concentrations of agonists (Gu et al., 2000). 
Recently, the existence of novel labile proteins was suggested both in the negative 
regulation and in the TCDD-induced degradation of AHR (Ma and Baldwin, 2002; Monk et 
al., 2003).  
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2.2.3 Interactions with other proteins 

The AHR interacts with a number of proteins, including transcription factors and coactivator 
or corepressor proteins. For example, the transcriptional coactivators SRC-1, nuclear 
activator (NcoA), and p160 directly interact with the AHR and coactivate transcription of 
TCDD-responsive genes (Beischlag et al., 2002; Hankinson, 2005). In contrast, interactions 
with the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) inhibit 
AHR-dependent gene expression (Nguyen et al., 1999; Rushing and Denison, 2002; Fallone 
et al., 2004). There are distinct motif(s) for the recruitment of coregulators to AHR; e.g. the 
coactivators SRC-1 and RIP140 interact with the Q-rich subdomain of the AHR 
transactivation domain (Kumar and Perdew, 1999; Kumar et al., 1999). 

The AHR is known to interact directly with the Rb, which controls cell cycle progression 
(Ge and Elferink, 1998). It was reported that this interaction potentiates repression of E2F-
dependent transcription and cell cycle arrest (Puga et al., 2000a). Very recent studies 
showed that TCDD treatment causes recruitment of the AHR to E2F-dependent promoters 
and the concurrent displacement of p300, which leads to repression of S-phase-specific 
genes and thus inhibition of the cell cycle (Marlowe et al., 2004). Rb may also act as a 
coactivator of the AHR, since interactions of the AHR with Rb have appeared to be 
necessary for maximal AHR activity (Elferink et al., 2001). Another mechanism by which 
the AHR is suggested to affect the cell cycle as well as apoptosis is interaction with 
transforming growth factor-beta (TGF-β) (Zaher et al., 1998).  

There is also evidence for cross-talk between the AHR and steroid hormone receptor signal 
transduction pathways, including the oestrogen (ER), androgen, progesterone and thyroid 
hormone receptors (Porterfield, 1994; Kharat and Saatcioglu, 1996; Jana et al., 1999; 
Selmin et al., 2005). For example, the TCDD-activated AHR directly interacts with 
oestrogen receptor alpha (ERα) and beta (ERβ) and orphan receptors COUP-TFI and 
ERRα1 to mediate the antioestrogenic effect of TCDD (Klinge et al., 2000; Ohtake et al., 
2003). In addition, the AHR may interact with the hypoxia-inducible factor (HIF) signalling 
pathways independently of competition for heterodimerization with ARNT (Chan et al., 
1999). Furthermore, the AHR interacts with the nuclear factor kappaB (NF-κB) signalling 
pathway, which plays an important role e.g. in immune responses, inflammatory reactions 
and apoptosis (Tian et al., 2002). It has been reported that activation of NF-κB is 
responsible for tumour necrosis factor-α (TNF-α) and lipopolysaccharide-induced 
suppression of CYP1A1 by AHR (Ke et al., 2001). 

The protein kinase C (PKC) pathway has been linked to TCDD-mediated AHR-dependent 
processes in several controversial reports (Berghard et al., 1993; Chen and Tukey, 1996; 
Long et al., 1998), but evidence on direct interactions between PKC and AHR has not been 
found until recently (Minsavage et al., 2004). The AHR tyrosine 9 appears to be a critical 
residue required for phosphorylation of the AHR and AHR-mediated gene transcription 
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(Bacsi and Hankinson, 1996; Park et al., 2000; Minsavage et al., 2003, 2004). Furthermore, 
direct interactions of the AHR with pp60src, a tyrosine kinase, were reported (Enan and 
Matsumura, 1996; Blankenship and Matsumura, 1997). In addition to PKC, mitogen-
activated protein (MAP) kinases may also play a role in TCDD-induced AHR 
phosphorylation (Tan et al., 2004a, 2004b). However, despite the evidence of direct 
phosphorylation of AHR, its functional significance is still unclear.  
 

2.2.4 Ligands  

The AHR can be bound and activated by structurally diverse ligands. The best-
characterized, synthetic AHR ligands are planar and hydrophobic HAHs and PAHs. HAHs 
include, in addition to dioxins, compounds such as dibenzofurans and biphenyls, and PAHs 
include 3-methylcholanthrene, benzo(a)pyrene, benzanthracenes and benzoflavones (Poland 
and Knutson, 1982; Denison and Nagy, 2003). HAHs are the most potent class of AHR 
ligands, e.g. TCDD is 30000 times more potent than benzo(a)pyrene in causing enzyme 
induction response in rats (Nebert et al., 2000). Therefore, TCDD is used as the prototype 
and model substance in cell and animal experiments. 

There is a wide variety of naturally occurring AHR ligands, most of which are dietary plant-
derived chemicals such as flavonoids, carotenoids and phenolics. They can activate the 
AHR signalling pathway, although the majority are relatively weak ligands (Denison et al., 
2002). One exception is indolo[3,2-b]carbazole (ICZ), which is an indole derivative present 
in some cruciferous vegetables and which has a high affinity for the AHR (Gillner et al., 
1993). However, in rats, it failed to cause toxicity and CYP1A1 induction (Pohjanvirta et 
al., 2002).  

To date, a true endogenous ligand for the AHR has not been found, although a number of 
reports have suggested potential canditates. Most of these suggested compounds are 
tryptophan derivatives (Rannug et al., 1987). For example, the tryptophan photoproduct, 6-
formylindolo[3,2-b]carbazole (FICZ), possesses a very high AHR-binding affinity and 
transiently induces CYP1A1 gene expression in cultured cells (Wei et al., 1999, 2000). 
Other potent AHR ligands are indigo and indirubin, which were isolated from human urine 
(Adachi et al., 2001) and induce AHR-mediated microsomal drug-metabolizing enzyme 
activity in mice (Sugihara et al., 2004). Another possible canditate for endogenous ligand 
was isolated from porcine lung tissue (Song et al., 2002). In addition, many other 
endogenous chemicals have been identified that can bind to the AHR and activate AHR-
mediated gene expression. These chemicals include bilirubin and biliverdin (Sinal and 
Bend, 1997; Phelan et al., 1998), arachidonic acid metabolites such as lipoxin A4 
(Schaldach et al., 1999) and several prostaglandins (Seidel et al., 2001), 7-ketocholesterol 
(Savouret et al., 2001) and retinoids (Soprano et al., 2001; Gambone et al., 2002).  
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2.2.5 Target genes  

Although numerous genes are regulated by the AHR, the best-studied target genes are those 
encoding xenobiotic-metabolizing enzymes. In mice, the conventional [Ah] gene battery 
comprises six members, two phase I cytochrome P450 genes and four phase II 
detoxification enzyme-encoding genes (Fig. 4) (Nebert et al., 1990, 1993, 2000). In 
addition, CYP1B1 gene is also regulated by the AHR (Sutter et al., 1994). Moreover, even 
within the CYP superfamily, new genes continue to be identified that are under AHR 
control (Rivera et al., 2002). 

 

Figure 4. The six members of the mouse [Ah] gene battery [modified from Nebert et 
al. (2000)]. Abbreviations: Cyp1a1, cytochrome P4501A1; Cyp1a2, cytochrome 
P4501A2; Nqo1, NAD(P)H:quinone oxidoreductase; Alhd3a1, cytosolic aldehyde 
dehydrogenase 3; Ugt1a6, UDP glucuronosyltransferase 1A6; Gsta1, glutathione 
transferase. 

 

Recent studies using DNA microarray techniques suggested that approximately 300 genes 
are potentially altered by AHR activation in the human hepatoma HepG2 cell line (Puga et 
al., 2000b; Frueh et al., 2001). However, only one third of these genes were directly 
regulated by TCDD while the remaining genes required protein synthesis to show their 
regulated expression by TCDD. When the genes were clustered in groups with related 
functions, several groups could be identified, e.g. genes involved in calcium regulation; 
receptor-associated kinases, phosphatases and their effectors; coding transcription factors; 
cardiovascular and pulmonary function; cell cycle regulation, differentiation and apoptosis; 
development, cell adhesion, cancer and metastasis; protein traffic and membrane integrity 
and drug metabolism and DNA stability (Puga et al., 2000b). In another study using 
microarray and reverse transcriptase-polymerase chain reaction (RT-PCR) techniques, 114 
genes (64 human and 50 rat genes) changed their expression on AHR activation in 
hepatocytes. Some of these genes were well-known targets of the AHR such as genes in the 
[Ah] gene battery, but also recently reported AHR targets, such as Bcl-2, Bcl-xl, BAD and 
cyclooxygenase 1 (Kel et al., 2004). 
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The development of new computational methods and availability of the human, mouse and 
rat genomic sequences have enabled the identification and characterization of promoters and 
other regulatory elements. In a recent study, promoters of AHR-regulated genes were 
analysed to search for new targets within the human genome (Kel et al., 2004). At least one 
potential AHR site was found in 864 genes (and 71 of these potential genes with the highest 
prediction scores were also verified by RT-PCR and microarray studies). Likewise, a 
comparative computational scanning approach was used to identify putative DREs in the 
genomic sequences of human, mouse and rat target genes (Sun et al., 2004). This screening 
observed a few thousand DRE-containing genes, but only 48 of these were common in 
human, mouse and rat. Among the 48 genes, 7 were classified as being involved in 
oxidative stress, hypoxia and detoxification, 5 were associated with calcium homeostasi, 
and 5 were localized in the endoplasmic reticulum (Sun et al., 2004). 

In addition to its traditional role as a ligand-activated transcription factor, the AHR also 
functions as a coactivator (Boutros et al., 2004; Sogawa et al., 2004). Upstream of the rat 
CYP1A2 gene, a novel response element (called XRE-II, DRE-II or AHRE-II) was 
characterized, to which the AHR-ARNT heterodimer can bind while associated with an 
unidentified factor (protein X) (Sogawa et al., 2004) (Fig. 5). Binding of this complex leads 
to an activation of a set of genes called the AHRE-II gene battery (Boutros et al., 2004). So 
far, a total of 36 genes have been found that contain AHRE-II motifs conserved across 
human, mouse and rat genomes and over one third of these genes responded to TCDD. In 
addition to CYP1A2, the AHRE-II gene battery encodes a large number of transporters and 
ion channels (Boutros et al., 2004). In oestrogen signalling, activated AHR-ARNT 
heterodimer also functions as a coactivator. This heterodimer directly recruits ER in the 
absence of ER ligands and activates the transcription of ER-mediated genes (Ohtake et al., 
2003). 

 

Figure 5. Schematic representation of two types of transcription mechanism 
mediated by AHR-ARNT. A. The classical model of induction of genes mediated by 
the AHR-ARNT heterodimer. B. The novel induction mechanism in which the 
AHR-ARNT heterodimer functions as a coactivator in the rat CYP1A2 gene 
[modified from Sogawa et al. (2004)]. 
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New AHR-regulated genes have also been identified by studying individual genes. For 
example, HES-1, which plays a role in neuronal differentiation and also in the cell cycle, as 
well as Socs2, which suppresses cytokine signalling, are new targets for AHR regulation 
(Boverhof et al., 2004; Thomsen et al., 2004). In addition, several hypothalamic 
neuropeptide genes contain DREs, which suggests that TCDD can directly regulate their 
expression in hypothalamic neurons (Fetissov et al., 2004). Interestingly, some genes of 
transcription factors are also regulated by the AHR (Puga et al., 2000b; Borlak et al., 2002; 
Kel et al., 2004), which could explain the AHR-mediated regulation of several genes that 
are not direct targets of the AHR (Kel et al., 2004). 

 

2.2.6 Diversity, evolution and physiological significance  

Characterization of AHR in diverse species is one approach to understanding the 
physiological significance of the AHR. So far, AHR cDNAs have been cloned and 
sequenced from a variety of mammalian species as well as birds, fishes and some 
invertebrate species (Table 1). The conservation of functional AHRs among species 
suggests that the AHR plays an important physiological role in addition to its role in 
xenobiotic metabolism. Evidence from AHR-deficient mice has revealed that the AHR can 
affect reproduction, survival and growth (Gonzalez and Fernandez-Salguero, 1998). 
Interestingly, recent studies provided evidence that AHR activation and developmentally 
induced heterodimerization with the ARNT are essential for normal vascular development 
(Lahvis et al., 2000; Walisser et al., 2004a, 2004b). Furthermore, the AHR regulates 
neuronal differentiation in C.elegans, suggesting that the AHR has an evolutionarily 
conserved role in neuronal development (Qin and Powell-Coffman, 2004).  
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Table 1. Full-length AHR cDNAs cloned to date [modified from Hahn (2002)]. 
 

Species Accession number Length (aa) Reference 

 
Mammals 

 Human  (Homo sapiens) NM-001621 848 (Dolwick et al., 1993a) 
 Mouse (Mus musculus) NM-013464 805 (Ema et al., 1992) 
 Rat (Sprague Dawley) (Rattus norvegicus) NM-013149 853 (Carver et al., 1994) 
 Hamster (Mesocricetus auratus) AF275721 920 (Korkalainen et al., 2000) 
 Guinea pig (Cavia porcellus) AY028947 846 (Korkalainen et al., 2001) 
 Rabbit (Oryctolagus cuniculus) D38226 847 (Takahashi et al., 1996) 
 Beluga Whale (Delphinapterus leucas) AF332999 845 (Jensen and Hahn, 2001) 
 Harbor seal (Phoca vitulina) AB056700 843 (Kim and Hahn, 2002) 
 Baikal seal (Phoca sibirica) AB072432 843 (Kim et al., 2002) 
 

Birds 

 Chicken (Gallus gallus) AF260832, AF192502 858 (Walker et al., 2000) 
 Common tern (Sterna hirundo) AF192503 859 (Karchner et al., 2000) 
 Black-footed albatross (Diomeda nigripes) AB106109 (AHR1) 861 (Yasui et al., 2004) 
 Black-footed albatross (Diomeda nigripes) AB106110 (AHR2) 861 (Yasui et al., 2004) 
 Cormorant (Phalacrocorax carbo) AB109545 (AHR1) 860 (Yasui et al., 2004) 
  

Amphibians 

 Frog (Xenopus laevis) AB109555 834 (Ohi et al., 2003) 
 

Bony fish 

 Killifish (Fundulus heteroclitus) AF024591 (AHR1) 944 (Karchner et al., 1999) 
 Killifish (Fundulus heteroclitus) U29679 (AHR2) 952 (Karchner et al., 1999) 
 Rainbow trout (Oncorhynchus mykiss) AF065137 (AHR2α) 1058 (Abnet et al., 1999) 
 Rainbow trout (Oncorhynchus mykiss) AF065138 (AHR2β) 1059 (Abnet et al., 1999) 
 Zebrafish (Danio rerio) AF258854 (AHR1) 805 (Andreasen et al., 2002) 
 Zebrafish (Danio rerio) AF063446 (AHR2)  1027 (Tanguay et al., 1999) 
 Medaka (Oryzias latipes) AB065092 (AHR1) 879 (Kawamura and Yamashita, 2002) 
 Atlantic tomcod (Microgradus tomcod) AF050489 (AHR2) 823 (Roy and Wirgin, 1997) 
 

Jawless fish 

 Lamprey (Petromyzon marinus) AF024595 1076 (Hahn et al., 1997) 
 

Invertebrates 

 Soft-shell clam (Mya arenaria) AF261769 843 (Butler et al., 2001) 
 Nematode (Caenohabditis elegans) AF039570 602 (Powell-Coffman et al., 1998) 
 Fruit fly (Drosophila melanogaster) AF050630 (spineless) 884 (Duncan et al., 1998) 
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Two AHR genes were identified in fish and very recently in aquatic birds (Karchner et al., 
1999; Andreasen et al., 2002; Yasui et al., 2004). Whether amphibians also have AHR2 is 
not yet clear (Ohi et al., 2003). AHR1 shows a high level of identity with the mammalian 
AHR, whereas AHR2 does not have a mammalian counterpart (Hahn, 2001). It has been 
suggested that AHR1 and AHR2 arose from gene duplication, which may have occurred 
after the diversion of fish from other vertebrate species. Mammalian AHRs belong to the 
AHR1 clade (Fig. 6). The third clade is the AHRR group, which due to another gene 
duplication diverged from the AHR clades before AHR1 and AHR2 diverged from each 
other (Hahn, 2002). AHRR has been identified both in mammalian and fish species 
(Mimura et al., 1999; Karchner et al., 2002). The fourth clade consists of invertebrate 
AHRs. Both AHR1 and AHR2 are capable of specific binding of TCDD, whereas neither 
AHRR nor the invertebrate AHR homologues possess this property (Hahn, 2002). Instead of 
its transactivation function, the AHRR group has acquired activity as a repressor. 

 

 

Figure 6. Phylogenetic tree showing relationship among vertebrate AHR1, AHR2, 
AHRR and invertebate AHR genes [modified from Hahn (2002)]. 

 
2.2.7 Induction mechanisms independent of the AHR 

TCDD has been reported to activate MAP kinases, such as Jun N-terminal kinase (JNK) and 
extracellular signal-regulated kinase (ERK), independently of AHR (Tan et al., 2002). 
However, further elucidation of the mechanism revealed that TCDD-activated MAP kinases 
enhance the transcriptional activity of ARNT and therefore the AHR-ARNT-dependent 
gene expression (Tan et al., 2004a). MAP kinases may regulate the transcriptional activity 
of cofactors (p300, p160, Rb and SMRT), which are associated with the AHR/ARNT 
complex (Tan et al., 2004a).  
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Moreover, other signal transductions may also be modulated independently of the DRE-
binding and transcriptional activation roles of AHR (Enan and Matsumura, 1996; Chan et 
al., 1999; Reiners and Clift, 1999; Puga et al., 2000a; Dunlap et al., 2002; Guo et al., 2004). 
However, it remains to be determined whether there is cross-talk with AHR through the 
common coregulator proteins shared by different pathways (Carlson and Perdew, 2002). 
Very recently, it was reported that nuclear localization of the AHR was an essential step in 
most TCDD-mediated responses, such as xenobiotic metabolism, TCDD toxicity as well as 
regulation of normal liver development (Bunger et al., 2003).  

 

2.3  Other bHLH/PAS proteins in dioxin signalling 

The AHR, ARNT and AHRR are all members of the bHLH/PAS protein family, which is a 
rapidly growing family of signal transduction molecules playing roles in development and 
environmental sensing, including xenobiotic metabolism, hypoxic response, circadian 
rhythm, development of the central nervous system (CNS) and tracheal formation (Gu et al., 
2000; Kewley et al., 2004). The family was originally identified and named according to 
three founder members: human ARNT, Drosophila PER and Drosophila SIM. All these 
proteins possess the essential bHLH/PAS homology domain, which mediates the interaction 
between two different family members.  

The bHLH/PAS proteins can be divided into two phylogenetic groups, based on sequence 
similarity. The class I factors include AHR, single-minded proteins (SIM1 and SIM2), 
hypoxia inducible factors (HIF-1α, HIF-2α and HIF-3α) and inhibitory PAS protein (IPAS) 
(Ema et al., 1996; Makino et al., 2002; Bracken et al., 2003). To form active transcription 
complexes they must dimerize with class II factors, such as ARNT, ARNT2 or circadian 
rhythm proteins PER, BMAL1 (= ARNT3) and BMAL2 (Hirose et al., 1996; Gekakis et al., 
1998; Takahata et al., 1998).  

 
2.3.1 ARNT and ARNT2 

ARNT is a dimerization partner not only for the AHR but also for several other members of 
the bHLH/PAS family and thus it plays a central role in regulating divergent signalling 
pathways (Sogawa et al., 1995b; Swanson, 2002). While ARNT can form heterodimers with 
many partner proteins and also homodimers with itself, ordinarily there exists a sufficient 
ARNT pool to prevent its levels from limiting AHR signalling (Pollenz et al., 1999; Tomita 
et al., 2000). However, the simultaneous inductions of the AHR and hypoxia signalling 
pathways were recently reported to reduce the AHR mediated responses but not the hypoxia 
response (Hofer et al., 2004; Prasch et al., 2004).  

ARNT was originally identified as a factor required for the nuclear translocation of the 
AHR from the cytoplasm in response to dioxins (Hoffman et al., 1991). ARNT has since 
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been shown to be a protein localized in the nucleus (Eguchi et al., 1997) and to contain NLS 
in its N-terminus in addition to bHLH and the PAS A and B domains (Whitelaw et al., 
1994). ARNT also contains a potent C-terminal transactivation domain (Jain et al., 1994) 
(Fig. 7). As in AHR, the promoter region of ARNT has no TATA box, but on the other hand, 
it has several potential regulatory sequences, such as two GC boxes, a cAMP-responsive 
element, AP-1 site, CAAT box and E box, which may contribute to a high level of 
expression of the ARNT (Wang et al., 1998). One splice variant of ARNT, the deletion of 
exon 5, was reported but does not impair the protein function (Hoffman et al., 1991; Drutel 
et al., 1996; Jana et al., 1998; Wang et al., 1998). 

ARNT has been characterized in various mammalian and fish species (Powell and Hahn, 
2000). For invertebrate species, ARNT homologues were found in both Drosophila (called 
Tango) and C.elegans (called AHA-1) (Duncan et al., 1998; Powell-Coffman et al., 1998). 
Their heterodimers with AHR homologues recognize the same DRE sequence as does 
mammalian AHR/ARNT heterodimer, which suggests that the basic mechanism is 
conserved between vertebrates and invertebrates, although the functions of these proteins 
are different (Duncan et al., 1998; Karchner et al., 2000). Studies with ARNT knockout 
mice show that the ARNT protein serves an indispensable function in development, 
probably via its role in hypoxic induction of angiogenesis (Kozak et al., 1997; Maltepe et 
al., 1997). Recently, it was suggested that ARNT may be involved in the development of 
nonsyndromic oral cleft (Kayano et al., 2004). 

ARNT2 is a close structural homologue of ARNT (Hirose et al., 1996) and is expressed 
primarily in brain and kidney, while ARNT is expressed ubiquitously (Drutel et al., 1996; 
Hirose et al., 1996; Jain et al., 1998; Petersen et al., 2000). The ARNT2 protein may play a 
role in dioxin signal transduction by acting as an alternative dimerization partner for AHR 
(Gu et al., 2000). ARNT2 also forms functional HIF complexes in neurons and plays an 
integral role in hypoxic responses in the CNS (Maltepe et al., 2000). In addition, ARNT2 
has other important biological roles, such as controlling the development of neuroendocrine 
lineages in hypothalamic nuclei together with SIM1 (Michaud et al., 2000).  

 

Figure 7. Schematic representation of the structures of AHR, AHRR and ARNT. 
The bHLH and PAS domains and Q-rich region are marked [modified from Kewley 
et al. (2004)]. 
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2.3.2 AHRR 

AHR repressor was first identified as a protein closely related to AHR in mice (Mimura et 
al., 1999), in which it inhibits AHR function by competing with AHR for dimerization with 
ARNT and for binding to the XRE sequence. In addition, AHRR is inducible by AHR 
ligands and thus regulates AHR function by a negative feedback mechanism affecting the 
expression of genes that are induced by dioxins (Mimura et al., 1999).  

AHRR is not capable of binding ligands, probably due to the presence of a truncated PAS B 
domain (Mimura et al., 1999; Karchner et al., 2002). Despite this deviation, AHRR can still 
form a functional heterodimer with ARNT (Kikuchi et al., 2003). Another domain, which is 
not functional in AHRR, is the Q-rich region (Fig. 7). This probably explains the inability of 
the AHRR-ARNT complex to transactivate DRE-regulated genes (Mimura et al., 1999; 
Karchner et al., 2002). The characterization of AHRR gene promoter sequences revealed no 
TATA box, but instead, several GC box and DRE sequences as well as a single NF-κB-
binding site were detected (Baba et al., 2001). It was suggested that the low constitutive 
activity of the AHRR gene is dependent on these GC boxes (Baba et al., 2001).  

To date, the AHRR gene has been identified in mouse, human, killifish and zebrafish 
(Mimura et al., 1999; Watanabe et al., 2001; Fujita et al., 2002; Karchner et al., 2002) 
(Evans et al., 2004). The basal expression of AHRR mRNA is very low in untreated tissues 
of mice, but after 3-methylcholanthrene treatment AHRR mRNA levels were induced in 
several tissues (Mimura et al., 1999). The high constitutive expression of AHRR has been 
reported to repress the induction of CYP1A1 in human fibroblasts (Gradin et al., 1999). In 
humans, AHRR is constitutively expressed in various normal tissues, especially in testis 
(Tsuchiya et al., 2003; Yamamoto et al., 2004). In a population in Japan, two polymorphism 
of AHRR were detected, one of which may be involved in the susceptibility to dioxin-related 
male infertility (Watanabe et al., 2004) and the incidence of micropenis (Fujita et al., 2002). 
In contrast, no associations were detected between the AHRR polymorphism and uterine 
endometriosis (Watanabe et al., 2001). 

 
2.3.3 Other bHLH/PAS proteins 

Recent data suggest that other bHLH/PAS proteins may also have connections with AHR 
signalling. First, Yang et al. (2004) reported that TCDD induces the expression of SIM1 via 
interaction with the AHR-ARNT2 complex and that this interaction is involved in the 
control of food intake. Moreover, SIM1 requires ARNT2 as an obligatory 
heterodimerization partner in the developmental process of neuroendocrinological cell 
lineages (Michaud et al., 2000; Hosoya et al., 2001). Second, TCDD alters the expression of 
PER in the suprachiasmatic nuclei, which is the master circadian clock (Li et al., 2004). In 
the same mouse model, persistent activation of the AHR pathway by TCDD led to a failure 
in circadian homeostasis (Frame et al., 2004). Third, AHR and HIF-1α have been shown to 
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inhibit each other independently of competition for ARNT (Chan et al., 1999; Pollenz et al., 
1999). 

 
2.4  Role of AHR genetic variability in dioxin sensitivity 

A characteristic feature of TCDD toxicity is wide variation in sensitivity among species and 
even strains of the same species (Table 2). The largest interspecies difference in TCDD 
toxicity exists between guinea pig and hamster, while L-E and H/W rats show the largest 
intraspecies difference. Both these animal pairs, exhibiting over 1000-fold difference in 
susceptibility to the acute lethality of TCDD, have been used as animal models in dioxin 
sensitivity studies. These animal models are particularly interesting because only some 
endpoints of TCDD toxicity are different in contrast to the mouse model employing the 
C57BL/6 and DBA/2 strains, in which all endpoints are similarly altered by TCDD 
treatment. The molecular basis for the rat strain difference appears to reside mainly in AHR 
polymorphism (see 2.4.2), but that for species difference is unknown. 

 

Table 2. Species differences in acute TCDD toxicity.  

 

Species/strain LD50(μg/kg) Reference 
 

Mouse 
 C57BL/6 180 (Chapman and Schiller, 1985) 
 DBA/2 2600 (Chapman and Schiller, 1985) 

Rat 
 Sprague-Dawley 60 (Beatty et al., 1978) 
 L-E 18 (Pohjanvirta et al., 1993) 
 H/W > 9600 (Unkila et al., 1994) 
 line A > 10 000 (Tuomisto et al., 1999) 
 line B 830 (Tuomisto et al., 1999) 
 line C 40 (Tuomisto et al., 1999) 

Guinea pig 1-2 (Schwetz et al., 1973)  
   (McConnell et al., 1978b) 

Hamster 3000-5000 (Olson et al., 1980b)  
   (Henck et al., 1981)  

Rabbit 115 (Schwetz et al., 1973) 

Chicken < 25 (Greig et al., 1973) 

Monkey < 70 (McConnell et al., 1978a) 

Fish 
 Lake trout (sack fry) 0.074 (Walker et al., 1996)  
 Rainbow trout (embryo) 0.20 (Walker et al., 1996)  
 Killifish (embryo) 0.25  (Toomey et al., 2001)  
 Zebra fish (embryo) 2.50 (Henry et al., 1997) 
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2.4.1 Mouse model 

C57BL/6 and DBA/2 mice 

One of the best-characterized strain differences in TCDD toxicity exists between the 
sensitive C57BL/6 and resistant DBA/2 mouse strains. This approximately 10-fold 
difference in sensitivity exists in a wide variety of TCDD-induced biochemical and toxic 
effects including CYP1A1 induction, acute lethality, teratogenicity, hepatic porphyria and 
thymic atrophy (Poland and Knutson, 1982; Nebert, 1989). The response to TCDD is 
dependent on the Ahr alleles; C57BL/6 mice carry a wild-type Ahrb1 allele that encodes a 
high-affinity AHR, while the DBA/2 strain carries a low-affinity-type Ahrd allele (Okey et 
al., 1989; Poland et al., 1994). cDNA cloning of the Ahrd allele revealed an Ala-to-Val 
substitution at codon 375 in the LBD that resulted in markedly reduced binding affinity for 
TCDD (Ema et al., 1994). Many other genetic variations were found in the mouse Ahr gene, 
but none of these polymorphisms has yet been associated with any change in receptor 
function (Thomas et al., 2002).  
 
Genetically engineered mice 

AHR knock out mice have been developed by three independent laboratories (Fernandez-
Salguero et al., 1995; Schmidt et al., 1996; Mimura et al., 1997). These mice do not exhibit 
induction of typical AHR target genes, such as of Cyp1a1 or Cyp1a2, when treated with 
TCDD (Fernandez-Salguero et al., 1995). They are also highly resistant to the toxic effects 
of TCDD including acute lethality, thymus atrophy, liver toxicity, teratogenesis, 
hydronephrosis and reproductive effects (Fernandez-Salguero et al., 1995; Fernandez-
Salguero et al., 1996; Mimura et al., 1997; Thurmond et al., 1999; Lin et al., 2001). In 
addition, these mice are resistant to the carcinogenity of benzo[a]pyrene (Shimizu et al., 
2000).  

Although AHR knock out mice appear normal at birth, they have several phenotypic 
abnormalities, such as immune system impairment, reduced fecundity and hepatic defects 
including smaller liver size, fibrosis and liver retinoic accumulation (Fernandez-Salguero et 
al., 1995; Schmidt et al., 1996; Andreola et al., 1997; Abbott et al., 1999). Lesions are 
found in many tissues, e.g. in skin, liver, heart, eye and kidney (Fernandez-Salguero et al., 
1997; Lahvis et al., 2000). However, the most reproducible phenotype across laboratories is 
a reduction in relative liver weight, which may be the result of the persistence of a fetal 
vascular structure, the ductus venosus, leading to massive portosystemic shunting (Lahvis et 
al., 2000). Identical patent ductus venosus was recently observed in mice harbouring a 
hypomorphic Ahr or Arnt allele, but AHR activation by TCDD during late development 
enables rescue from this vascular defect (Walisser et al., 2004a, 2004b).  

Recently, mice carrying a mutation in the nuclear localization sequence of the Ahr were 
developed (Bunger et al., 2003). These Ahrnls mice are resistant to TCDD toxicity and 
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display the same developmental defects as were previously observed in AHR knock out 
mice, which suggests that nuclear localization is required for most, if not all, of AHR-
regulated biology (Bunger et al., 2003).  

Furthermore, a transgenic mouse model that expresses a constitutively active AHR was 
developed (McGuire et al., 2001; Andersson et al., 2002). These mice have reduced life 
span, show increased expression of AHR-dependent genes such as Cyp1a1, develop 
spontaneous stomach tumours, show decreased thymus weight and diminished population of 
peritoneal B1 cells and have a higher prevalence of liver tumours than wild-type mice 
(Andersson et al., 2002, 2003; Moennikes et al., 2004). 

A ‘humanized’ mouse was developed by introducing human AHR cDNA in place of mouse 
Ahr (Moriguchi et al., 2003). The human AHR expressed in these mice is functionally less 
responsive to TCDD than the AHR of DBA/2 mice. Possibly, this humanized model mouse 
could be used to predict the biological effects of bioaccumulative environmental toxicants 
such as TCDD in humans (Moriguchi et al., 2003).  

 
2.4.2 Rat model  

H/W and L-E rats  

The TCDD-sensitive L-E and TCDD-resistant H/W rats show the largest intraspecies 
difference, about 1000-fold, in acute lethality of TCDD. The lethal dose 50 (LD50) values 
for these rat strains are about 10 and > 9600 μg/kg, respectively (Pohjanvirta et al., 1993; 
Unkila et al., 1994). Thus, the H/W rat represents the most TCDD-resistant mammal 
known. However, despite their resistance to the acute lethality of TCDD, H/W rats are 
sensitive to certain biochemical and toxic responses of TCDD, with the magnitude of 
responses being similar to those in L-E rats. These responses, called type I endpoints, 
include induction of CYP1A1, thymic atrophy, fetotoxicity and tooth defect (Pohjanvirta et 
al., 1989; Alaluusua et al., 1993; Huuskonen et al., 1994; Simanainen et al., 2002; 2003). 
Type II endpoints with a clear sensitivity difference include, in addition to TCDD lethality 
(Pohjanvirta et al., 1993; Unkila et al., 1994), e.g. wasting syndrome (Pohjanvirta et al., 
1987), hepatotoxicity (Pohjanvirta et al., 1989), liver tumor promotion (Viluksela et al., 
2000), teratogenesis (Huuskonen et al., 1994), hyperbilirubinaemia and accumulation of 
biliverdin in the liver (Niittynen et al., 2003) and increased serum tryptophan and free fatty 
acids (Pohjanvirta et al., 1989; Unkila et al., 1994; Simanainen et al., 2002, 2003). 

In vitro studies show that the binding affinity of AHR for TCDD is similar in both strains, 
although the number of binding sites was 2-3-fold higher in L-E rats (Pohjanvirta et al., 
1999). Moreover, both AHRs are able to dimerize with ARNT and bind to DRE in DNA 
(Pohjanvirta et al., 1999). In addition, there are no major differences in tissue distribution, 
metabolism and excretion of 14C-TCDD between L-E and H/W rats (Pohjanvirta et al., 
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1990). The TCDD-induced upregulation of AHR is also similar in both rat strains (Franc et 
al., 2001a, b). Nevertheless, Western blot analysis revealed a notable size difference in the 
AHR proteins (Pohjanvirta et al., 1999). While the L-E rat AHR was identical to that 
previously reported for other rat strains (106 kDa), the AHR in H/W rats was significantly 
smaller (98 kDa).  

Molecular cloning and sequencing of the H/W rat AHR revealed two point mutations 
(Pohjanvirta et al., 1998). The first mutation found in exon 10 results in change in a single 
amino acid, but it probably has no functional consequences because this mutation occurs in 
a hypervariable region. Instead, the other point mutation at the first nucleotide of intron 10 
is critical, because it destroys the normal exon/intron junction and leads to use of cryptic 
splice sites (Fig. 8). Three different mRNA products have been detected: a deletion of 129 
bp and two insertions 29 bp and 134 bp long. Since the shorter insertion variant contains a 
stop codon and the same insertion is included at the 5’ end of the longer insertion variant, 
they translate into an identical protein, which has a total deletion of 38 amino acids with 7 
novel amino acids at its C-terminus. Another type of H/W AHR protein, due to a deletion, is 
43 amino acids shorter than the wild-type AHR (Pohjanvirta et al., 1998). Consequently, 
both types of H/W AHRs have shorter transactivation domains and therefore a restructured 
C-terminus. Genetic studies imply that the reconstructed AHR is the principal reason for 
TCDD resistance in H/W rats (Pohjanvirta et al., 1999; Tuomisto et al., 1999). 

 

Figure 8. Structure of H/W AHR at the DNA level (A) and the protein level (B). a, 
b, and c act as cryptic splice sites resulting in two protein products with total 
deletions of 43 and 38 amino acids [modified from Okey et al. (2005)]. 
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Interestingly, both H/W and L-E rats exhibit equal susceptibility to the acute lethality of 
perfluorodecanoic acid, which also causes a wasting syndrome similar to that induced by 
TCDD but does not act via the AHR (Brewster and Birnbaum, 1989; Unkila et al., 1992). 
Thus, the sensitivity difference between H/W and L-E rats appears to be specific for TCDD. 
In addition, it decreases gradually along with increasing chlorination of the dioxin molecule 
(Pohjanvirta et al., 1995; Simanainen et al., 2002). 

 
Line A, B and C rats 

The genes affecting dioxin sensitivity in H/W rats were segregated into new rat lines, using 
conventional crossbreeding studies (Tuomisto et al., 1999). Line A has the mutated H/W-
type AHR and is as resistant to TCDD as the H/W. Line B has another resistance gene, the 
still unknown gene B, and is intermediately resistant. Line C has wild alleles of both genes 
and is almost as sensitive as L-E rats. These experiments showed that resistance to TCDD is 
associated with these mutated genes (Tuomisto et al., 1999). 

 

2.4.3 Hamster and guinea pig 

The largest interspecies difference in acute TCDD toxicity exists between guinea pig and 
hamster. Guinea pigs are the most TCDD-sensitive mammals known with an LD50 value of 
about 1 μg/kg, while hamsters are extremely resistant with LD50 values of about 3000-5000 
μg/kg (McConnel et al., 1978; Olson et al., 1980a; Henck et al., 1981; Poland and Knutson, 
1982). However, these species exhibit no apparent difference in the binding affinity of AHR 
to TCDD or in the binding of transformed AHR to the DRE (Gasiewicz and Rucci, 1984; 
Denison and Wilkinson, 1985; Bank et al., 1992). As also shown in the rat model, some 
responses, such as enzyme induction and fetotoxicity, are fairly similar between these 
animal species, despite the wide divergence in acute lethality of TCDD (Pohjanvirta and 
Tuomisto, 1994).  

Hamsters and guinea pigs have large physiological differences that complicate their use in 
dioxin sensitivity studies. For example, guinea pigs are strict herbivores whereas hamsters 
are omnivores and also hibernators (Pohjanvirta and Tuomisto, 1994). In addition, the half-
life of TCDD elimination differs, being 11-15 days in hamsters and up to 94 days in guinea 
pigs (Olson et al., 1980a; Olson, 1986). 
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2.4.4 Other animal models 

Fish 

Fish have been used to study the molecular basis of differences in susceptibility to drugs and 
environmental chemicals, because they are among the vertebrate animals most sensitive to 
dioxin toxicity, especially during their early life stages. In contrast to mammals, many fish 
species possess at least two AHRs (Hahn, 2001). AHR1 is the orthologue of the mammalian 
AHR, whereas AHR2 appears to be present only in early vertebrates (Karchner et al., 1999). 
While most fish species are highly sensitive to dioxin toxicity, some populations of Atlantic 
killifish (Fundulus heteroclitus) have developed a heritable resistance to TCDD and PAH 
toxicity following long-term exposure (Bello et al., 2001). Hahn et al. (2004) showed that 
the AHR1 locus in F. heteroclitus is highly polymorphic and that allele frequencies differ 
between some dioxin-sensitive and dioxin-resistant populations.   
 

Others 

Several frog species are resistant to TCDD toxicity, especially during development. 
However, cloning of Xenopus laevis AHR revealed that its AHR was similar to those of 
other vertebrate species, which suggests that the low responsiveness of frogs to TCDD is not 
accounted for by the structural characteristics of AHR (Ohi et al., 2003). Invertebrate 
animals are also relatively insensitive to the toxicity of dioxin-like compounds (Hahn, 
1998), but are not useful in dioxin sensitivity studies because their AHRs lack TCDD 
binding (Butler et al., 2001). 

 

2.4.5 Polymorphism of human AHR  

In humans, several genetic variations in the AHR gene have been detected. Most of these 
polymorphisms are present in exon 10, which is the region responsible for transactivation of 
the AHR (Harper et al., 2002). Kawajiri et al. (1995) were the first to report the replacement 
of the amino acid arginine by lysine at codon 554 in a population in Japan. Very recently, 
this polymorphism was shown to be significantly associated with survival in soft tissue 
sarcoma (Berwick et al., 2004). The second AHR polymorphism was found at codon 570, 
which results in replacement of valine by isoleucine (Smart and Daly, 2000; Wong et al., 
2001). The third genetic variation at codon 517 replaces the amino acid proline with serine 
(Wong et al., 2001). The fourth variant in exon 10 is localized at codon 786 and leads to 
replacement of methionine with valine (Cauchi et al., 2001). Exept for Arg554Lys 
polymorphism, none of these other polymorphisms alone appears to alter receptor function, 
but Wong et al. (2001) reported that the combination of mutations at codons 554 and 570 
abrogates CYP1A1 induction.  
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In addition to variations in exon 10, a single polymorphism has been reported at codon 44 
(Kawajiri et al., 1995) and several in the 5’ flanking sequence of AHR (Cauchi et al., 2001; 
Racky et al., 2004) (Fig. 9).  

 

Figure 9. Sites of known polymorphisms or genetic variants in human AHR. Exons 
1-12 are marked. Sequence variations are numbered according to recommended 
nucleotide nomenclature and previously used nomenclature is indicated in 
parentheses. Abbreviations are basic helix–loop–helix domain (bHLH), ligand-
binding domain (LBD); Per/Arnt/Sim (PAS) domain [modified from Harper et al. 
(2002)]. 

 

2.5  Risk assessment of dioxins  

The risk assessment of dioxins suffers from lack of knowledge regarding the molecular 
mechanism of dioxin toxicity. Only one mechanism of dioxin action, induction of CYP1A1, 
has been elucidated in some detail. However, CYP1A1 induction is not predictive of 
toxicity, although both effects are mediated via the AHR. A useful tool for studying key 
mechanisms in dioxin toxicity is the large strain-specific sensitivity difference between H/W 
and L-E rats. While there is a very large sensitivity difference in some endpoints of TCDD 
toxicity, some responses such as induction of CYP1A1 are similar between these strains.  

Another fact that complicates dioxin risk assessment is the exceptionally wide species 
differences in dioxin sensitivity. In the mouse and rat models, the primary structure of the 
AHR was regarded as one of the most critical factors determining dioxin sensitivity (Ema et 
al., 1994; Pohjanvirta et al., 1998; Tuomisto et al., 1999). The 10-fold difference between 
the dioxin-sensitive C57BL/6 and the dioxin-resistant DBA/2 mice is explained by 
polymorphic variations in the LBD of AHR (Ema et al., 1994). The over 1000-fold 
difference between the dioxin-resistant H/W and the dioxin-sensitive L-E rats is due to a 
mutation in the AHR transactivation domain of the H/W rat (Pohjanvirta et al., 1998). In 
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human AHR, several polymorphisms have been detected, but none has yet been associated 
with altered function of AHR or impact on human health (Harper et al., 2002).  

One important question in dioxin risk assessment is whether animal models are appropriate 
for assessing risk in humans. In addition to species differences in TCDD toxicity, the use of 
animal data for extrapolation to humans also suffers from interspecies differences in the 
range of observed effects and elimination half-life. While the structure and mode of action 
of AHR appear to be highly conserved across species, a recent study comparing DREs in 
human, mouse and rat sequences showed that only 39% of human orthologues with a 
positionally conserved DREs had a rodent counterpart with a positionally conserved DRE 
(Sun et al., 2004). These results suggest that AHR-mediated gene expression may not be 
well conserved across species. In addition, many target genes of TCDD do not have DREs, 
suggesting that some TCDD-induced responses are due to secondary effects (Frueh et al., 
2001; Sun et al., 2004). These facts may challenge the simple cross-species extrapolation 
from animal data to humans and the suitability of rodent models for assessing the potential 
human health risks associated with TCDD exposure. 

A critical question in risk assessment is whether humans are sensitive or resistant to dioxin 
toxicity. Data from industrial and occupational exposures reveal no cases of acute mortality 
among highly exposed persons (Bertazzi et al., 2001). However, the highest TCDD 
exposure ever encountered among humans corresponded to an acute (single) dose of 
approximately 25 μg/kg (Landi et al., 1998; Abraham et al., 2002; Geusau et al., 2002; 
Eskenazi et al., 2004), which is already lethal to the most TCDD-sensitive animal, the 
guinea pig, but not to the most common laboratory animals (Table 2). Furthermore, in vitro 
studies with human cell lines and tissue cultures have suggested that humans are susceptible 
to certain biochemical and toxic impacts of dioxins to the same degree as rats (Lucier, 
1991). Despite these facts, the general view is that humans are rather resistant to the acute 
toxicity of dioxins. Moreover, there are large differences in susceptibility among 
individuals: again in Seveso, some people did not develop chloracne even though they had 
very high levels of TCDD (Mocarelli, 2001). In addition, women had higher TCDD 
concentrations and also appeared to show metabolic behaviour for TCDD different from 
that of men, which suggest a gender difference in TCDD toxicity (Landi et al., 1997, 1998).  

In 1997, the IARC changed the classification of TCDD from “a possible human carcinogen” 
(Group 2B) to “a human carcinogen” (Group I) (IARC, 1997). However, this classification 
has been criticized because it was mainly based on strong evidence in experimental animals 
but only limited epidemiological evidence in humans and generalizations from animals to 
humans are limited by the wide interspecies variation in TCDD responses (Cole et al., 2003; 
Greene et al., 2003). For example, it was estimated that humans are less sensitive than rats 
to the carcinogenic effects of TCDD (Hays et al., 1997). In addition, the elimination half-
life of TCDD reported for background and moderate exposure levels varies between humans 
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and rodents, being about 7 years in adult humans and about 2-4 weeks in mice and rats 
(Allen et al., 1975; Gasiewicz et al., 1983; Flesch-Janys et al., 1996) and therefore the 
cumulative effects of TCDD may be different between humans and experimental animals. 
Notably, the elimination half-live depends on the dose being shorter at high doses; for 
example, in the most severely TCDD-contamined woman it was reported to be as short as 
1.5 years (Geusau et al., 2002). 

Although human intake levels of TCDD have decreased notably over the past two decades, 
a significant baseline exposure to dioxins appears to be inevitable (Aylward and Hays, 
2002). It is believed that the current background exposure should not pose a significant risk 
to the general population (Greene et al., 2003). However, there are some subgroups in the 
general population that are exposed to higher intakes of dioxins, such as breast-fed infants 
and families of fishermen who frequently consume large amounts of Baltic herring and 
salmon (Kiviranta et al., 2000, 2003; Lorber and Phillips, 2002). 

The WHO as well as several other authoritative agencies have recommended a tolerable 
daily intake (TDI) of 1-4 pg WHO-TEQ/kg body weight per day (van Leeuwen et al., 2000; 
Hays and Aylward, 2003). This recommendation was based on the most sensitive effects of 
dioxins that were considered adverse (hormonal, reproductive and developmental effects) 
seen at low doses in animal studies. It also includes an overall uncertainty factor of 10 to 
account for possible differences in susceptibility between humans and experimental animals. 
However, the USEPA concluded that safe doses of dioxins are as much as a thousand-fold 
lower (USEPA, 2000). Their latest risk assessment was also based on noncancer endpoints, 
but they used a linear model for exploring the exposure-response relationship instead of the 
threshold models used by other agencies. 
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3  AIMS OF THE STUDY 

 
Sensitivity to the toxic effects of TCDD varies widely among animal species and even 
within strains. There are 1000-fold sensitivity differences involved in acute lethality of 
TCDD between L-E and H/W rats as well as between hamsters and guinea pigs. The AHR is 
the major reason for the sensitivity difference between H/W and L-E rats, but the reason for 
the sensitivity difference between hamsters and guinea pigs is unknown. Since the AHRs of 
hamsters and guinea pigs were not cloned earlier, the first aim in this study was to clone 
them to determine whether the structure of the AHR also plays a critical role in this dioxin 
sensitivity difference. In addition to the AHR, there is another, currently unknown factor 
involved in dioxin sensitivity differences. Therefore, other aims in this study were to 
compare the structures of ARNT, ARNT2 and AHRR between H/W and L-E rats to find out 
whether these important proteins in the AHR signalling pathway could contribute to strain-
specific sensitivity differences in TCDD toxicity. Since the AHRR gene has not been 
identified earlier in rats, its expression in addition to cloning also needed to be 
characterized. The final aim was to examine the hypothalamic effects of TCDD on 
expression of genes encoding the AHR-regulated bHLH/PAS proteins, which are potentially 
involved in molecular pathogenesis of the wasting syndrome, utilizing our differentially 
sensitive rat strains. 

 

The specific aims in each study were as follows: 

1. To clone and sequence the AHR from TCDD-resistant hamsters, 

2. To clone and sequence the AHR from the most TCDD-sensitive mammal known, the 
guinea pig, 

3. To clone and sequence the ARNT and the ARNT2 from H/W and L-E rats, 

4. To clone and sequence the AHRR from H/W and L-E rats and to study its time-, dose-, 
and tissue-dependent expression and 

5. To study the effects of TCDD on the hypothalamic expression of several bHLH/PAS 
proteins participating in dioxin signal transduction and possibly the wasting syndrome. 
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4  MATERIALS AND METHODS 

 
4.1  Animal husbandry and sample collection (I-V) 

Two golden Syrian hamsters, a male and a female, were purchased from Harlan Nederland 
(Horst, the Netherlands). After arriving, the hamsters were killed by decapitation at the age 
of 4 weeks and various tissues were rapidly removed. The tissues were flash-frozen in liquid 
nitrogen, and stored at –80 ºC until analysis (I). Liver samples of guinea pigs were provided 
by Dr. Niku Oksala (Kuopio University Hospital). Two domestic guinea pigs were killed by 
decapitation at the age of 4 weeks and the livers were collected (II). 

H/W and L-E rats were obtained from the breeding colony of the National Public Health 
Institute, Department of Environmental Health, Kuopio, Finland. Before the experiments, 
young adult male L-E and H/W rats were transferred from the barrier unit to an artificially 
illuminated animal room with a constant temperature of 21.5 ± 1 °C, humidity 55 ± 10% 
and a 12-h/12-h light/dark rhythm (lights on at 7 a.m.). The rats were housed in single-rat 
stainless-steel wiremesh cages on aspen wood chips (Tapvei, Kaavi, Finland) (III-V). The 
rats were killed by decapitation and various tissues were rapidly removed, flash-frozen in 
liquid nitrogen, and stored at –80 ºC for subsequent analysis. The doses used, exposure 
times and tissues analysed in each study (I-V) are presented in Table 3.   
 
Table 3. Experimental design  

 

Study Animals 
Doses  
(μg/kg 
TCDD) 

Exposure 
times  

(hours) 
Analysed tissues 

I hamsters - - 
liver, lung, heart, kidney, spleen, 
thymus, hypothalamus, testis, 
ovary 

II guinea pigs - - liver 

III H/W and L-E rats 50 or 100 24 or 96 liver, hypothalamus, kidney, 
lung, adipose tissue 

IV H/W and L-E rats 0.001-100 3, 6, 19, 24 
or 96 liver, heart, kidney, spleen, testis 

V H/W and L-E rats 50 or 100 6, 96 or 120 hypothalamus 



 

45  

4.2  Chemicals 

TCDD was purchased from the Ufa Institute (Ufa, Russia) and was over 98% pure, as 
assessed with gas chromatography-mass spectrometry (III-V). 

 
4.3  RT-PCR cloning  

The cloning procedure was essentially similar in each cloning study (I-IV). First, frozen 
liver samples were homogenized, using an Ultra-Turrax homogenizer (T-25 basic, IKA-
WERKE GMBH & Co, Germany). Total RNA was isolated, using Trizol reagent (Life 
Technologies, Eggenstein, Germany) or the GenElute Mammalian Total RNA Miniprep Kit 
(Sigma-Aldrich, St. Louis, MO) and cDNA was synthesized with Omniscript reverse 
transcriptase (Qiagen, Hilden, Germany). The PCR was performed with the DyNAzyme 
EXT DNA polymerase blend (Finnzymes, Espoo, Finland) or with FastStart DNA 
polymerase (Roche, Mannheim, Germany) on an Uno II, TPersonal or TGradient 
thermocycler (Biometra, Göttingen, Germany). The touchdown method was applied 
throughout all reactions: the annealing temperature was set at about 5 °C above the 
calculated melting temperature of the primers for the first cycle and then decreased by 1 °C 
per cycle down to the desired final temperature. Modified RACE techniques were used to 
obtain the 5’ and 3’ ends. Detailed descriptions of the primers and cloning strategies are 
presented in the original publications (I-IV). 

The PCR products were cloned into a cloning vector, using the blunt-end technique (I-IV). 
The PCR products were purified from 1% agarose gels with the QIAquick Gel Extraction 
Kit (Qiagen), Wizard SV Gel and PCR Clean-Up Systems (Promega, Madison, WI) or 
GenElute Gel Purification Kit (Sigma-Aldrich). The purified PCR products were 
concentrated using Pellet Paint Co-precipitant (Novagen, Madison, WI). Before ligation, T4 
DNA polymerase (MBI Fermentas, Vilnius, Lithuania) was used to blunt the possible 3’ or 
5’ protruding termini of the DNA and T4 polynucleotide kinase (MBI Fermentas) was used 
to transfer the phosphate groups from the ATP to the 5’ termini of the DNA. The DNA 
inserts were ligated into pCR-Script SK(+) Amp plasmid (Stratagene, La Jolla, CA), which 
was digested beforehand using SmaI restriction endonuclease to create the blunt ends and 
dephosphorylated with Calf Intestine Alkaline Phosphatase (CIAP) to prevent self-ligation 
of the vector. In addition to an insert and a vector, a typical ligation reaction contained T4 
DNA ligase (1-3 units) (MBI Fermentas), 5% polyethylene glycol 4000 and ligation buffer 
consisting of 40 mM Tris-HCl, 10 mM MgCl2, 10 mM DDT and 0.5 mM ATP, pH 7.8. The 
ligation reactions were usually carried out at 22 °C 1-3 h or at 16 °C overnight. 

The ligation mixture was transformed into E. coli XL1-Blue supercompetent bacterial cells 
(Stratagene). Ampicillin selection and blue/white screening were used to separate colonies 
with recombinant plasmids. The colonies were further screened with PCR to reveal the size 
of the inserts. The primers were designed to amplify the entire polylinker area in the 
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plasmid. The desired colonies were picked and cultured overnight in LB medium containing 
50 μg/ml ampicillin. The plasmid DNA was isolated from bacterial DNA using the Wizard 
Plus SV Minipreps DNA Purification System (Promega). Sequencing was performed in the 
AIV institute, University of Kuopio, Finland, with an A.L.F. or A.L.Fexpress DNA 
sequencer (Amersham Pharmacia Biotech, Uppsala, Sweden) using either Thermo 
Sequenase Fluorescent Labelled Primer Cycle Sequencing Kit or Thermo Sequenase CY5 
Dye Terminator Kit (Amersham Pharmacia Biotech). All ambiguities were resolved by 
auxiliary clonings (I-IV).  

 
4.4  Northern blot 

For Northern blot analysis, poly(A)+ RNA was purified from total RNA. The denatured 
mRNA samples were fractionated by electrophoresis in an agarose-formaldehyde gel, 
transferred onto a nylon membrane (Hybond N+, Amersham Pharmacia Biotech), hybridized 
with a digoxigenin-labelled probe (Roche) and finally detected with the colorimetric method 
using NBT/BCIP (Roche) (I).  

 
4.5  Western blot 

Western blot analysis was performed using protein fractions isolated from liver (I-II) and 
lung (I) as well as in vitro-translated protein (I) generated from hamster AHR cDNA. In 
vitro transcription and translation were carried out using Single Tube Protein System3 
(Novagen). The proteins were analysed with immunoblotting after sodium 
dodecylsulphate – polyacrylamide gel electrophoresis (SDS-PAGE). After electrophoresis, 
the proteins were transferred onto a nitrocellulose membrane (Bio-Rad, Hercules, CA) and 
then subjected to Western blot analysis using rabbit polyclonal anti-AHR antibody 
(1:50 000) as the primary antibody (BioMol Research Laboratories, Plymouth Meeting, PA) 
and an alkaline phosphatase-labelled anti-rabbit IgG as the secondary antibody (Roche). The 
bands were visualized with NBT/BCIP (Roche). 

 
4.6  Expression analysis 

RT-PCR was used to study gene expression. The total RNA was isolated and cDNA 
generated as earlier described in the cloning procedure. To study the expression of different 
splice variants of ARNT and ARNT2 (III), semiquantitative PCR was used and the band 
intensities were assessed using the Pharmacia Gel Documentation System and the 
Imagemaster 1D software (Amersham Pharmacia Biotech). In subsequent studies (IV-V), 
quantitative RT-PCR analyses were performed employing the QuantiTect SYBR Green 
PCR Kit (Qiagen) and Rotor-Gene 2000 Real-Time Amplification System (Corbett 
Research, Mortlake, NSW, Australia). The LightCycler instrument and LightCycler 



 

47  

FastStart DNA Master SYBR Green I Kit (Roche) were also used in quantification in some 
expression analyses (V). The expression levels were related to mRNA concentrations of the 
housekeeping gene β-actin. Detailed description of primers and PCR conditions are 
presented in the original publications (III-V).  

 
4.7  Statistics 

In the time-course and dose-response analysis (IV) with three or more groups, statistical 
comparisons were performed by one-way analysis of variance (ANOVA) if the variances 
were homogenous. Duncan’s multiple range test was employed for multiple comparisons 
post hoc if ANOVA showed a statistically significant difference (p < 0.05) among the 
groups. In the case of nonhomogenous variances, the Kruskal-Wallis nonparametric 
ANOVA followed by the Mann-Whitney U test were used. The time-course data from days 
1 and 4 were broken down strainwise and assessed statistically with Student’s t-test. In 
study V, the data were statistically analysed for the presence of differences between the 
control and TCDD-exposed groups (separate comparisons strainwise at each time point) or 
between corresponding groups of the strains with two-tailed t-test for independent samples. 
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5  RESULTS 

 

5.1  Structure of the AHR in hamster and guinea pig (I-II) 

The coding region of hamster AHR proved to be longer than in guinea pig, because of the 
incorporation of short satellitelike DNA repeats in the Q-rich subunit of the C-terminal 
transactivation domain (I: Fig. 2). This repetitive sequence contained codons for glutamine 
and thus it increased the number of glutamine residues in the Q-rich subdomain (Table 4). 
The size of the receptor protein was also larger in hamster (I: Fig. 6; II: Fig. 4).  

 
Table 4. Comparison between hamster and guinea pig. 

 

 Hamster Guinea pig 

Coding region of AHR (bp) 2763 2541 

Number of amino acids in AHR protein 920 846 

Estimated size of AHR protein (kDa) 120 103 

Number of glutamines in Q-rich subdomain 49 23 

 

When the amino acid sequences of hamster and guinea pig AHR were compared with the 
corresponding human, rat and mouse sequences, the greatest similarity was found in the 
aminoterminus within the bHLH and PAS domains (II: Fig. 3). In the variable C-terminus, 
guinea pig AHR also resembled that of the human, rat and mouse receptors. Only the 
exceptionally large Q-rich subdomain in hamster AHR differed strikingly from other 
sequences. The overall homology between hamster and guinea pig was only 56%. 
Surprisingly, guinea pig showed the highest degree of homology to human AHR (II: 
Table 1). 

 
5.2  Novel splice variants of ARNT and ARNT2 in the rat (III) 

ARNT and ARNT2 were cloned from both L-E and H/W rats via RT-PCR, using primers 
based on published rat sequences (Drutel et al., 1996). The sequences of both ARNT and 
ARNT2 proved to be identical between these strains.  

Several different products of alternative splicing were detected (Table 5; III: Fig. 1). All 
ARNT variants were in-frame changes, while one insertion detected in the structure of 
ARNT2 contained a premature stop codon resulting in a truncated protein in C-terminus. 
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The relative expression levels of the splice variants were examined with semiquantitative 
RT-PCR (III: Figs. 2, 3). The pattern of expression was similar in untreated and TCDD-
treated rats. Furthermore, there were no differences in the expression of splice variants 
between H/W and L-E rats.   
 
Table 5. Splice variants detected in the sequences of ARNT and ARNT2 in the rat. 

 

Gene Location Mutation Size (bp) 
Relative 

expression level 
vs. wt (%) 

ARNT exon 5 deletion 45 60-70 

ARNT 3’ end of exon 6 deletion 141 very low 

ARNT 5’ end of exon 11 deletion 15 not detected 

ARNT 5’ end of exon 16 
interindividual variation in 
the number of trinucleotide 
repeats (CAG) 

variable 
(39-63) not determined 

ARNT 5’ end of exon 20 insertion 3 not determined 

ARNT2 5’ end of exon 19 insertion 31 40 

 

 

5.3  AHRR cloning from H/W and L-E rats (IV) 

Molecular cloning of rat AHRR revealed that it is highly identical to mouse AHRR, which 
was the first AHRR to be characterized (Mimura et al., 1999). The N-terminal end of rat 
AHRR was highly conserved, but the PAS B and Q-rich domains typical of AHR structure 
were severely truncated or lacking (IV: Figs. 2, 3). The structures were identical in both the 
H/W and L-E strains.  

The time-, dose- and tissue-dependent expression of AHRR was determined, using 
quantitative real-time RT-PCR. There was wide variation among individual rats in the 
expression of liver AHRR mRNA. When the expression of CYP1A1 was measured using 
the same cDNA samples, the variation was strikingly less. The lowest dose of TCDD tended 
to increase AHRR mRNA levels slightly, while the CYP1A1 levels remained unaffected 
(IV: Fig. 6). The constitutive expression levels of AHRR were very low in untreated rats but 
increased rapidly after TCDD exposure (IV: Fig. 5). Testis exhibited the highest constitutive 
expression of AHRR but very low expression of CYP1A1. The TCDD-induced levels of 
AHRR were highest in kidney, spleen and heart, in which CYP1A1 induction was relatively 
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low. Liver displayed the lowest AHRR levels in response to TCDD but the highest 
induction of CYP1A1 (IV: Fig. 7). Again, no marked differences were found between H/W 
and L-E rats.  

 

5.4  Expression of bHLH/PAS proteins in rat hypothalamus (V) 

The effect of TCDD on the hypothalamic mRNA expression of the bHLH/PAS proteins 
AHR, ARNT, ARNT2, AHRR, SIM1 and PER2, as well as that of CYP1A1 and CYP1A2, 
was analysed using quantitative real-time RT-PCR. The expression levels were measured in 
both the H/W and L-E strains, which show an over 1000-fold sensitivity difference also in 
the wasting syndrome.  

In both strains, high constitutive levels of ARNT2 and AHR, moderate levels of ARNT and 
CYP1A1 and very low levels of AHRR, PER2, CYP1A2 and SIM1 mRNAs were recorded. 
The only genes whose expressions were modified by TCDD were AHRR, CYP1A1 and 
CYP1A2. Importantly, we could not reproduce the previously reported changes in SIM1 or 
PER2 expression after TCDD exposure. Differences between the H/W and L-E rats 
appeared in the constitutive levels of AHR and ARNT and in the TCDD-induced levels of 
CYP1A2, AHRR, AHR and ARNT, all of which were about 2-4-fold lower in H/W rats. 

 
5.5  Novel sequence data (I-IV) 

The sequences of cloned cDNAs as well as sequence data of novel splice variants were 
submitted to GenBank (National Center for Biotechnology Information, National Library of 
Medicine, Bethesda, MD) (Table 6).  
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Table 6. Complete coding sequences submitted to GenBank.  

 

Accession 
number Species Description 

AF275721   hamster (Mesocricetus auratus) AHR mRNA 

AY028947   guinea pig (Cavia porcellus) AHR mRNA 

AY264361   rat (Rattus norvegicus) ARNT mRNA 

AY264362   rat (Rattus norvegicus) ARNT, exon 5 deletion variant 

AY264363   rat (Rattus norvegicus) ARNT, exon 6 deletion variant 

AY264364   rat (Rattus norvegicus) ARNT, exon 11 deletion variant 

AY264365   rat (Rattus norvegicus) ARNT, exon 20 insertion variant 

AY264366   rat (Rattus norvegicus) ARNT2, exon 19 insertion variant 

AY367561   rat (Rattus norvegicus) AHRR mRNA 
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6  DISCUSSION  

 
6.1  AHR structure as a determinant of dioxin sensitivity 

Hamsters and guinea pigs are used as animal models in dioxin sensitivity studies. Guinea 
pigs are the most TCDD-sensitive mammals, while hamsters can tolerate over 1000-fold 
higher doses of TCDD. A similar difference in acute TCDD toxicity exists between two rat 
strains, the sensitive L-E and the resistant H/W. Recent cloning of H/W rat AHR revealed 
changes in the architecture of the transactivation domain, which appears to be the principal 
reason for TCDD resistance in H/W rats (Pohjanvirta et al., 1998; Tuomisto et al., 1999). 
Therefore, the primary structure of hamster AHR was determined to ascertain whether 
TCDD resistance in hamsters has a similar basis. Moreover, the cloning and sequencing of 
guinea pig AHR was performed to compare its transactivation domain structure especially 
with that in hamster and also with other AHR sequences. Our goal was to better understand 
the role played by AHR structure as a determinant of dioxin sensitivity. 

The N-terminal ends of the hamster and guinea pig AHRs containing the bHLH and the 
PAS domains are highly conserved. This high degree of homology is not surprising, since 
these domains have important functions such as DNA binding, ligand binding and 
heterodimerization with the ARNT (Dolwick et al., 1993b). The most conspicuous 
difference among AHR sequences appears in the C-terminal transactivation domain, which 
is essential for transactivation function of the AHR in vitro (Jain et al., 1994; Fukunaga et 
al., 1995; Kumar et al., 2001). In the TCDD-resistant hamster, the Q-rich subdomain is 
larger and also contains twice as many glutamine residues as the AHR of the TCDD-
sensitive guinea pig. Across published mammalian species, there is a distinct correlation 
between the number of glutamine residues and sensitivity to the acute lethality of TCDD. 
This suggests that the Q-rich subdomain in the C-terminal transactivation domain may be 
causally involved in the differences in sensitivity to TCDD toxicity. 

 
6.1.1 Restructured transactivation domain selectively affects TCDD responses  

Studies in our laboratory have revealed that both of the most TCDD-resistant animals 
known, hamsters and H/W rats, have remodelled transactivation domains in their AHRs. An 
interesting feature is that despite the large deletion or enlargement in the transactivation 
domain the induction of CYP1A1 remains normal in both animals (Pohjanvirta and 
Tuomisto, 1994). In addition, hamsters and outbread Long-Evans rats display similar 
reproductive alterations after perinatal TCDD exposure to nearly identical dosage levels 
(Gray et al., 1995). The dosage levels associated with fetotoxicity or monooxygenase 
induction in hamsters and H/W rats are also almost similar to those in sensitive species 
(Henry and Gasiewicz, 1987; Pohjanvirta et al., 1988; Pohjanvirta and Tuomisto, 1994; 
Birnbaum and Tuomisto, 2000). Thus, in TCDD-resistant hamsters and H/W rats, the 
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change in the transactivation domain may not influence the expression of some genes (type I 
responses), while it has a dramatic effect on many other responses such as lethality, toxicity 
and wasting (type II responses) (Fig. 10). In other words, the alteration appears to be 
endpoint-dependent: it selectively affects the transcription of only some genes, notably 
those that are central to dioxin toxicity. Therefore, the existence of type I and II endpoints in 
H/W rats suggests that different genes may have different requirements for the structure of 
the transactivation domain.  

 

 

Figure 10. Examples of type I and II responses. A. Hepatic induction of CYP1A1 
mRNA. H/W and L-E rats were treated with 0.001-100 μg/kg TCDD 19 h before 
liver removal. Expression levels are given relative to β-actin concentrations. Each 
data point represents mean ± SD of four individual rats (IV). B. Relative body 
weight change in H/W and L-E rats after a single dose of 50 μg/kg TCDD. Points 
represent means ± SD of 4 individual rats (V). 

 

6.1.2 Possible mechanisms by which the restructured transactivation domain affects 
  transcription machinery 

 
Protein-protein interactions 

The AHR/ARNT complex can activate target gene expression through direct protein-protein 
interactions with transcription factors and coactivators or corepressors, some of which are 
known to bind to the transactivation domain of AHR (Rowlands et al., 1996; Kobayashi et 
al., 1997; Nguyen et al., 1999; Beischlag et al., 2002; Hankinson, 2005). For example, the 
coactivators SRC-1 and RIP140 bind to the Q-rich region in vitro (Kumar and Perdew, 
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1999; Kumar et al., 1999). Furthermore, the Q-rich subdomain is one of the two binding 
sites for Rb (Ge and Elferink, 1998). The AHR/ARNT heterodimer may also interact with 
other signal transduction pathways, which may occur indirectly via shared coactivators, e.g. 
via p300/CBP coactivators (Kobayashi et al., 1997; Kumar and Perdew, 1999; Carlson and 
Perdew, 2002). In addition, the transactivation domain of human AHR is able to recruit 
cofactors similar to those of the LBD of ERα (Reen et al., 2002). Since there is little 
information on the protein-protein interactions underlying transcriptional regulation of 
AHR, it is difficult to assess to what degree the restructured transactivation domains in 
dioxin-resistant animals affect these interactions and thereby the transactivation potential of 
AHR. 

 
Conformation 

Activation of genes by the AHR/ARNT complex is a multistep process that includes several 
conformational changes in the AHR protein (Kronenberg et al., 2000; Henry and Gasiewicz, 
2003). The remodelled transactivation domain of AHR may have some effect on the three-
dimensional structure, but probably not on the first structural alterations arising from ligand 
binding and heterodimerization with ARNT, because it has been established that the 
domains for ligand binding, heterodimerization and DNA binding can function even when 
the transactivation domain is completely deleted (Dolwick et al., 1993b; Ko et al., 1997). In 
later steps, the transactivation domain of the AHR is needed for facilitating the alteration of 
the promoter chromatin structure to a form that is capable of binding transcription factors 
and other cofactors (Ko et al., 1996; Whitlock et al., 1996). In human AHR, the amino acids 
663-688 in the Q-rich region probably form an α-helical secondary structure, in which a 
single amino acid Leu-678 may play a critical role in making contacts with coregulators 
(Kumar et al., 2001). This same leucine residue was conserved in the AHR sequences of 
both hamster and guinea pig; thus, it may not play a role in dioxin sensitivity differences 
between these animals. 

 
Enhancer-promoter communications 

Gene activation by the AHR requires a number of sequential steps, beginning from ligand 
binding and ending at interactions of the AHR/ARNT heterodimer with proteins that 
facilitate changes in chromatin structure (Whitlock, 1999; Swanson, 2002). In our rat model, 
the first events in AHR signalling are identical between TCDD-resistant and TCDD-
sensitive rats (Pohjanvirta et al., 1999) and probably also between TCDD-resistant hamster 
and TCDD-sensitive guinea pig (Pohjanvirta and Tuomisto, 1994). The differences arise 
after binding of the AHR/ARNT complex to enhancer sequences (DREs) upstream of the 
target genes. This binding promotes the alteration in chromatin structure and disruption of 
nucleosomes (Okino and Whitlock, 1995). The transactivation domain of AHR, but not that 
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of ARNT, mediates the TCDD-inducible enhancer-promoter communication, which thereby 
increases promoter accessibility and facilitates promoter occupancy by the transcription 
factors (Ko et al., 1996; Ko et al., 1997). In this regard, the restructured transactivation 
domains in the AHRs of hamsters and H/W rats may impair mediation of the induction 
signal from enhancer to promoter and thus affect the expression of some specific genes. 

 
Subdomains in the transactivation domain 

The AHR has a complex transactivation domain that is composed of several segments which 
are often classified with respect to their amino acid composition (Ko et al., 1997; Kumar et 
al., 2001). In mice, the Q-rich subdomain harbours most of the transactivation potential, but 
other subdomains were also potent transcriptional activators of the mouse Cyp1a1 gene (Ko 
et al., 1997). In the transactivation domain of the human AHR, potentially distinct acidic, Q-
rich and proline/serine/threonine-rich subdomains have been identified (Rowlands et al., 
1996; Reen et al., 2002). These subdomains are able to function independently as well as to 
cooperate and thus result in a synergistic activation of transcription (Rowlands et al., 1996; 
Kumar et al., 2001). In addition to the Q-rich region, other subdomains are also capable of 
sequestering cofactors involved in transcription (Reen et al., 2002) and thus this flexibility 
via multiple activation subdomains could make the AHR a versatile transcription factor. 
However, in TCDD-resistant hamsters, the other subdomains in the transactivation domain 
may not compensate for the deviant Q-rich subdomain; instead, synergistic transactivation 
of some genes may be impaired.  
 

AHR as a coactivator 

In oestrogen signalling, the activated AHR/ARNT complex functions as a coactivator by 
directly recruiting the ER and thereby activating the transcription of ER-mediated genes 
(Ohtake et al., 2003). Very recently, the AHR/ARNT heterodimer was shown to bind via an 
unidentified X-protein to a novel response element called XRE-II (called also DRE-II or 
AHRE-II) upstream of the rat CYP1A2 gene (Sogawa et al., 2004). Binding of this complex 
leads to an activation of a set of genes, called the AHRE-II battery that encodes a large 
number of transporters and ion channels (Boutros et al., 2004). It remains to be determined 
whether the reconstructed transactivation domain of the AHR in TCDD-resistant animals 
plays a role in this coactivation function of AHR. Furthermore, it would be interesting to 
find out if some of the species differences in dioxin toxicity could be explained through this 
aspect of AHR function.  
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Quantitative difference 

L-E rats express two- to three-fold higher levels of the AHR and ARNT than H/W rats both 
before and after TCDD treatment (Pohjanvirta et al., 1999) (V). However, these differences 
in the amounts of AHR and ARNT may not play a role in strain-specific sensitivity 
differences, because DRE binding of the AHR/ARNT heterodimers occur similarly in these 
rats (Pohjanvirta et al., 1999). Recently, studies using mice harbouring a hypomorphic Arnt 
allele showed that the AHR is dependent on the ARNT for adaptive, toxic and 
developmental pathways. Interestingly, those mice whose ARNT expression is reduced to 
10% of wild-type levels are resistant to dioxin toxicity, but retain TCDD-induced CYP1A 
activity (Walisser et al., 2004b). Moreover, Tomita et al. (2000) reported that despite more 
than 80% loss in ARNT expression in lung, maximal induction of CYP1A1 can still be 
found. These results suggest that adaptive CYP1A1 response to TCDD does not require as 
many AHR/ARNT heterodimers as toxic or developmental pathways. This may provide a 
simplified explanation for the existence of type I and type II responses: due to a restructured 
transactivation domain of AHR, the transactivation ability of the AHR/ARNT complex may 
be reduced, but is still sufficient for maximal activation of the CYP1A1 gene. 

 

6.2 ARNT, ARNT2 and AHRR may not contribute to dioxin sensitivity 
  in the rat model 

Although the AHR appears to be the major reason for TCDD resistance in H/W rats, some 
other factors are also involved (Pohjanvirta, 1990). When the resistance genes of H/W rats 
were segregated into new rat lines, it was observed that in addition to the AHR the 
resistance was also associated with an unknown gene B. Line B rats bearing the Bhw allele 
are intermediately resistant to TCDD (Tuomisto et al., 1999; Simanainen et al., 2003) and 
possess their own characteristic feature of TCDD toxicity, namely predisposition to 
accumulation of biliverdin in the liver (Niittynen et al., 2003). 

Gene B is still unidentified, but it may encode a protein closely involved in the AHR 
signalling pathway. Therefore, we cloned and sequenced the cDNAs of ARNT, ARNT2 and 
AHRR from H/W and L-E rats to determine if these proteins could be auxiliary factors 
accounting for the strain-specific differences in TCDD toxicity. However, the cDNA 
sequences proved to be identical, suggesting that the structures of these proteins do not 
contribute to dioxin sensitivity. Surprisingly, we found several splice variants in the 
structures of ARNT and ARNT2, but none of these variants appeared to be related to TCDD 
resistance. Instead, they could have other functions suggesting an intricate regulation of 
ARNT and ARNT2 activities.  

The cDNA sequence of rat AHRR showed high levels of sequence identity to mouse AHRR 
and also to rat AHR, except that the PAS B and Q-rich subdomains were lacking. We found 



 

57  

no marked differences in the expression of AHRR between H/W and L-E rats before or after 
TCDD treatment in any of the tissues examined. Thus, the rat strain differences in TCDD 
toxicity cannot be explained by the differential expression of AHRR. However, 
simultaneous determination of CYP1A1 mRNA suggested that AHRR may play a 
modulatory part in CYP1A1 regulation. 

 

6.3 Differences in the hypothalamic expression of bHLH/PAS proteins 
  may not account for the wasting syndrome 

The TCDD-induced wasting syndrome is a type II endpoint that shows a clear sensitivity 
difference between differentially sensitive rat strains. This suggests the involvement of the 
AHR signalling pathway in regulation of genes contributing to the wasting syndrome. The 
exact mechanism by which TCDD affects feeding is unknown, but due to the central role of 
the hypothalamus in the control of appetite and body weight, it may involve hypothalamic 
activation of some currently unidentified genes. Therefore, H/W and L-E rats were used to 
examine the effects of TCDD on hypothalamic expression of several bHLH/PAS genes that 
are involved in, or related to, AHR signalling. If the wasting syndrome seen in L-E rats were 
due to changes in expression levels of these studied genes, a difference should be seen in 
comparison to H/W rats, which maintained their body weight four days after TCDD 
treatment. 

No dramatic differences between differentially sensitive rat strains appeared in the 
expression levels of eight studied genes. However, the L-E rats expressed two- to three-fold 
higher constitutive or TCDD-induced mRNA levels of AHR, ARNT, ARNT2 and AHRR. 
This sensitive rat strain has been reported earlier to possess higher hepatic concentrations of 
AHR and ARNT (Pohjanvirta et al., 1999). Despite these differences, DRE binding of the 
AHR/ARNT heterodimers occurs similarly in both rat strains, suggesting that differences in 
the amounts of AHR and ARNT do not play a noticeable role in this interstrain difference. 

The largest difference between H/W and L-E rats was seen in the TCDD-induced expression 
of CYP1A2, which was about four-fold higher in L-E rats. However, no major differences 
in hypothalamic kinetics of 14C-TCDD between these strains have been detected 
(Pohjanvirta et al., 1990); induction of CYP1A1 also occurs similarly. Interestingly, it was 
reported that the absence of CYP1A2 may afford partial protection against TCDD-induced 
liver toxicity (Smith et al., 2001). In addition, recent studies with male Cyp1a1 knockout 
mice showed that these mice are somewhat resistant to high-dose TCDD-induced toxicity 
and the wasting syndrome (Uno et al., 2004). However, the protection due to loss of the 
Cyp1a1 gene is very small compared with that seen in Ahr knockout mice (Fernandez-
Salguero et al., 1996). Besides, studies using our rat model suggest that induction of 
CYP1A activity is independent of TCDD-induced toxic endpoints, such as the wasting 
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syndrome. Concordantly, CYP1A1 induction could be dissociated from the toxic effects of 
TCDD in ARNT hypomorphic mice (Walisser et al., 2004b).  

Although the changes found do not account for the wasting syndrome, the presence of all 
principal genes of the AHR signalling pathway in rat hypothalamus makes it a candidate 
target for TCDD and shows that the basic mechanisms for AHR signalling are functional. 
The AHR appears to be an essential mediator of both the adaptive and toxic effects of 
TCDD, but only the mechanism of CYP1A1 induction has been well elucidated. In contrast, 
the exact mechanism as well as the genes mediating TCDD-induced toxicity and the wasting 
syndrome are still poorly known.  

 

6.4  Implications for risk assessment  

Risk assessment of dioxins is complicated by the exceptionally wide species differences in 
dioxin sensitivity. In the mouse and rat models, the primary structure of the AHR appears to 
be the most critical factor determining dioxin sensitivity. Both the 10-fold sensitivity 
difference between C57BL/6 and DBA/2 mice and the over 1000-fold difference between 
L-E and H/W rats are explained by the presence of polymorphic variation in the AHR (Ema 
et al., 1994; Pohjanvirta et al., 1998). Accordingly, the structure of the AHR also appears to 
be an important determinant of dioxin sensitivity differences in hamster and guinea pig, 
which also show over 1000-fold differences in sensitivity to the acute lethality of TCDD. 
Moreover, the data from the present study emphasize the importance of the transactivation 
domain and especially the Q-rich subdomain in dioxin sensitivity. 

Would it then be possible to make future predictions of species-specific dioxin sensitivity 
differences by characterizing the structure of the AHR? This appears to hold in many 
species, but probably not in all species. In the dioxin literature, humans are considered to be 
highly resistant to the acute toxicity of TCDD, but the structure of the human AHR does not 
support the resistance. On the contrary, the human AHR turned out to be highly homologous 
to that of the most dioxin-sensitive species known, the guinea pig. The assumption of 
human resistance is mainly based on the fact that the human AHR appears to have a lower 
relative affinity for TCDD than the receptors of most susceptible laboratory species (Ema et 
al., 1994; Harper et al., 2002; Ramadoss and Perdew, 2004). In an AHR-humanized mouse 
model, the expressed human AHR was also less responsive to TCDD than the AHR of 
resistant DBA/2 mice (Moriguchi et al., 2003). Another reason is that no cases of acute 
mortality have been detected among persons who have received high doses of dioxins in 
industrial or occupational exposures (Bertazzi et al., 2001). In Seveso and later in an 
individual intoxication case in Vienna, the highest TCDD concentrations in blood lipid were 
56 000 ng/kg and 144 000 ng/kg, respectively. The highest concentration in the most 
exposed woman in Vienna roughly corresponded to a single dose of 25 μg TCDD per 
kilogram of body weight, and this dose caused a severe intoxication syndrome (Geusau et 
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al., 2001, 2002). This dose indicates that humans are more resistant to the acute toxicity of 
TCDD than guinea pigs and L-E rats, but it may not be reasonable to assume that humans 
are less sensitive than most laboratory animals. Evidence from in vitro studies suggested 
that humans appear to be at least as sensitive as rats to some biochemical effects of dioxins 
(Lucier, 1991). However, in that study, one of the measured parameters was induction of 
CYP1A1, which is a classical adaptive response to TCDD, but not apparently in relation to 
toxic responses caused by TCDD. Studies using our rat model support the present view that 
the adaptive pathway participating in metabolism of PAHs is unrelated to the toxic pathway 
mediating the deleterious effects of dioxins (Walisser et al., 2004b). 

In addition to the AHR, also ARNT and AHRR are important in mediating the biological 
effects of dioxins. Thus, it could be expected that these genes may in part contribute to 
dioxin sensitivity differences. However, the present study showed that neither the structural 
variation nor the expression of these genes play a role in the strain-specific differences in 
TCDD toxicity in our rat model. This fact may somewhat facilitate dioxin risk assessment, 
because it further emphasizes the importance of the AHR structure as a determinant of 
dioxin sensitivity differences.  

The fact that the molecular mechanisms of dioxin toxicity are still poorly known 
complicates dioxin risk assessment. One mechanism that we tried to elucidate in this study 
was the TCDD-induced wasting syndrome, which shows clear sensitivity difference 
between H/W and L-E rats, indicating that this effect is also mediated via AHR signalling. 
Although no clear relationship between the TCDD-induced expression of the genes studied 
and the wasting syndrome was found, the present study showed the usability of our rat 
model in elucidating mechanisms in dioxin toxicity. Since the endpoints, which differ most 
between H/W and L-E rats, include acute lethality, wasting and hepatotoxicity, our rat 
model would be useful in the search for genes that are critical to development of those 
TCDD toxicities. 



 

60  

7  CONCLUSIONS  
 

1. The C-terminal transactivation domain of the AHR appears to be an important 
determinant of the species- and strain-specific sensitivity differences in TCDD 
toxicity. A Q-rich subregion of this domain is aberrant in hamsters and this may 
account for the exceptional resistance of this species to the acute lethality of TCDD. 

2. Among the most common laboratory animals used in dioxin sensitivity studies, 
namely rat strains with wild-type AHR, mouse, hamster and guinea pig, there is an 
inverse correlation between the number of glutamine residues in the Q-rich subdomain 
and TCDD sensitivity.  

3. The human AHR shows the highest homology to the AHR of the most TCDD-
sensitive species known, the guinea pig. 

4. L-E and H/W rats express several splice variants of ARNT and at least one splice 
variant of ARNT2. At least the largest deletions of ARNT as well as the insertion in 
ARNT2 leading to a truncated protein are likely to have functional consequences. 

5. The large strain-specific differences in susceptibility to TCDD lethality between H/W 
and L-E rats are not explained by the structural variations of ARNT and ARNT2.  

6. Rat AHRR lacks the PAS B and Q-rich domains. In mice, this explains the inability of 
AHRR both to bind ligand and transactivate DRE-regulated genes. 

7. The constitutive expression of the AHRR is very low, but after TCDD exposure the 
mRNA levels of the AHRR increase rapidly. The induction of AHRR is as sensitive a 
response to TCDD as the induction of CYP1A1, although the maximal induction 
levels are considerably lower. 

8. The AHRR shows tissue-dependent expression, so that testis exhibits the highest 
constitutive expression of AHRR, whereas kidney, spleen and heart show the highest 
induction of AHRR in response to TCDD treatment. 

9. The structures of AHRR cDNA as well as the expression patterns by TCDD are 
similar between H/W and L-E rats; therefore the AHRR may not contribute to strain 
differences in dioxin sensitivity in this rat model. 

10. The presence of all principal proteins in the AHR signalling pathway in rat 
hypothalamus makes it a good candidate for TCDD regarding its influence on 
development of the wasting syndrome. 

11. TCDD does not modulate the expression of SIM1 or PER2 in rat hypothalamus; 
therefore these genes may not be involved in the effects of TCDD on feeding. 
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12. The constitutive expression levels of AHR and ARNT and the TCDD-induced levels 
of CYP1A2, AHRR, AHR and ARNT are the only differences among the parameters 
measured that can be detected between H/W and L-E rats in rat hypothalamus. 
However, the changes found probably do not account for development of the wasting 
syndrome. 
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