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Drinking water microbial growth has many undesirable effects on water quality, evoking
esthetic and technical problems and increasing health risk. Growth of microbes in drinking
water is affected by various factors like disinfection, residence time in the distribution network,
temperature, and microbial nutrients like organic carbon and phosphorus. Most of the bacteria in
drinking water originate from biofilms in pipelines, so that also the pipe material and hydraulics
can affect the microbial growth. Chlorination is one effective and widely used method for
preventing microbial growth in drinking water.

In central Europe and USA organic carbon is usually the nutrient which is limiting for microbial
growth. However, in Finland and Japan, phosphorus has proven to be the limiting nutrient for
microbial growth in drinking water. Standard methods are not sensitive enough for analysing the
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available phosphorus (MAP) was developed. The method is based on the growth of test bacteria,
���������	�
 ����
������� in water sample. The maximum growth of ��
 ����
������ is
converted to the content of MAP by a conversion factor of 3.73 x 108 "#$	 ��!����
���������

standard curve.

The effects of different water purification techniques on the microbial nutrients (assimilable
organic carbon, AOCpotential and MAP), microbial concentrations and microbial growth potential
were studied in 25 Finnish waterworks and pilot scale experiments. Chemical coagulation,
activated carbon filtration and infiltration in soil removed effectively microbial nutrients (MAP
and AOCpotential), microbes and microbial growth potential in the water. Ozonation increased
both AOCpotential and MAP concentrations in water, which was also seen in increasing growth
potential of microbes in ozonated water. Liming of water increased MAP and disinfection with
chlorine increased AOCpotential. UV-disinfection did not increase the content of MAP, in fact
AOCpotential even slightly decreased.

In drinking waters produced from groundwater, the content of MAP and microbial growth
potential were higher than in drinking waters produced from surface water this being probably
attributable to the more effective water purification of surface waters.� In phosphorus limited
drinking waters MAP, in contrast to AOC, correlated with the growth potential of microbes in
the water.

The effect of phosphorus on the formation of biofilms was studied in a pilot scale experiment. In
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led to an increase in the concentration of microbes present in the biofilms.



Lehtola, Markku J. Mikrobeille käyttökelpoinen fosfori talousvedessä.
Kansanterveyslaitoksen julkaisuja A21 / 2002. 77s.
ISBN 951-740-306-2; ISBN 951-740-307-0 (pdf-version)
ISSN 0359-3584; ISSN 1458-6290 (pdf-version)


��!��
�"�#�$� �
	��
����%�����&'

Talousveden mikrobikasvu heikentää veden laatua monin eri tavoin. Haitat voivat olla
esteettisiä, teknisiä tai terveydellisiä. Talousveden mikrobikasvuun vaikuttavat useat tekijät
kuten desinfiointi, veden viipymä vesijohtoverkostossa, lämpötila, sekä vedessä olevat
mikrobiravinteet, kuten orgaaninen hiili ja fosfori. Suurin osa talousveden mikrobeista on
peräisin putkiston sisäpinnoilla olevista biofilmeistä, joiden kasvuun vaikuttavat lisäksi myös
putkimateriaali ja hydrauliset olosuhteet. Veden klooraus on tehokas ja yleinen tapa estää
mikrobikasvua talousvedessä.

Ravinteista orgaaninen hiili on yleensä mikrobikasvua rajoittava tekijä Keski-Euroopassa ja
Yhdysvalloissa. Suomessa ja Japanissa sitävastoin fosforin on havaittu rajoittavan talousveden
mikrobikasvua. Standardimenetelmät eivät ole riittävän herkkiä analysoimaan alhaisia (<2 �	�

fosforin pitoisuuksia vedessä. Työssä kehitetty uusi, herkkä (määritysraja 0.08 �	�� !

biologinen testi mikrobeille käyttökelpoisen fosforin (MAP) määrittämiseksi vedestä perustuu
���������	�
 ����
������ bakteerin kasvuun vesinäytteessä. Testibakteerin maksimaalinen
kasvu vesinäytteessä voidaan laskea standardoinnissa saadulla muuntokertoimella 3.73 x 108

"#$	 ��!�������������
�
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���
��äyttökelpoisen fosforin pitoisuutta.

Erilaisten vedenkäsittelytekniikoiden vaikutusta veden mikrobiravinne-(assimiloituva
orgaaninen hiili, AOCpotential ja MAP) ja mikrobipitoisuuksiin tutkittiin 25:llä suomalaisella
vesilaitoksella, sekä pilot mittakaavan kokein. Kemiallinen saostus, aktiivihiilisuodatus sekä
maahanimeytys vähensivät tehokkaasti veden mikrobiravinteita, mikrobeja, sekä mikrobien
kasvukykyä. Veden otsonointi lisäsi sekä AOCpotential että MAP pitoisuutta, mikä heijastui myös
vedessä olevien mikrobien kasvuun. Kalkin lisääminen veteen lisäsi myös veden MAP
pitoisuutta ja klooridesinfiointi AOCpotential -pitoisuutta. UV-desinfioinnilla ei ollut vaikutusta
veden MAP-pitoisuuteen, mutta AOCpotential-pitoisuus laski hieman.

Pohjavedestä valmistetussa vedessä MAP-pitoisuudet ja mikrobien kasvukyky olivat
korkeampia kuin pintavedestä valmistetussa vedessä. Tämä johtui pintavesien tehokkaammasta
puhdistamisesta. Fosforirajoitteisissa vesissä veden MAP-pitoisuus korreloi mikrobien
kasvukyvyn kanssa.

Fosforin vaikutusta biofilmien muodostumiseen tutkittiin pilot-mittakaavassa.
Fosforirajoitteisessa vedessä jo pienen fosfaattilisäyksen (1-5 �	�� !
� ����������� ��������
biofilmien mikrobipitoisuutta.
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AOC assimilable organic carbon

AOCpotential assimilable organic carbon analysed with addition of inorganic

nutrients

AODC acridine orange direct counts

ARG artificially recharged groundwater

ATP adenosine triphosphate

ATCC American Type Culture Collection

BAC biologically activated carbon

BDOC biodegradable organic carbon

CFU colony forming unit

DNA deoxyribonucleic acid

GAC granular activated carbon

HGR heterotrophic growth potential of bacteria

HPC heterotrophic plate count

MAP microbially available phosphorus

MX 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone

PAC polyaluminum chloride

PVC polyvinyl chloride

RNA ribonucleic acid

SFS Finnish Standards Association

TOC total dissolved organic carbon

UV ultraviolet

UV254 ultraviolet radiation at the wavelength of 254 nm

WHO World Health Organization
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Good drinking water should not be harmful for health or for the materials of distribution system

(McFeters 1990; Council directive 1998). According to the EC directive, drinking water should

fulfill the quality requirements at the consumers tap (Council directive 1998), i.e. it is not

sufficient the water leaving the waterworks should be of high quality, that quality has to be

maintained until the consumer opens his/her water tap. Undesired health effects can be caused

by chemical or microbiological agents and many various viruses, bacteria and fungal can be

found in some drinking waters (Gerba ��
	�� 1975; Lippy and Waltrip 1984; Augoustinos ��
	��

1995; Lahti and Hiisvirta 1995; Zacheus and Martikainen 1995; Gavriel ��
	�� 1998; Ford 1999;

Kukkula ��
	�� 1999; Miettinen ��
	�� 2001a; Kramer ��
	�� 2001).

There is no clear evidence for a relationship between the incidence of pathogenic bacteria or

human diseases and heterotrophic plate counts in drinking water (Payment ��
	�, 1993; Gavriel

��
 	�� 1998; Hunter 2002). Usually waterborne epidemics are caused by accidental

contamination of drinking water e.g. by flooding, surface runoff or leakage of a wastewater

pipeline (Miettinen ��
 	�� 2001a). Some heterotrophic bacteria, like ���������	�
 ���

��
����	��
�	�������
���������	
and
��������	���
�	, commonly found in drinking water may

have virulence factors and thus must be viewed as potential health risks, particularly to

immunocompromised consumers (Payment ��
	�. 1994; Rusin ��
	�. 1997a; Pavlov ��
	�. 2001).

However, Edberg and Allen found that even though some bacteria growing in drinking water

have virulence factors, they are not associated with human disease (Edberg ��
	�. 1996; Edberg

and Allen, 2002). Pathogenic faecal microbes like enteric viruses, protozoan parasites,

�	������	���

 ����
 ����
�����

	���
 ����
����	
 ����
 (EHEC), ��
����	
 ����
��������	�

���
����
���	, �������	���

����
��
 	�������	
	��
and
 ������	
��� from contamined raw water

sources may gain access to the drinking water as a result of inadequate water treatment (Lippy

and Walltrip 1984; Lahti and Hiisvirta 1995; Kukkula ��
 	�� 1999; Ford 1999; Percival and

Walker 1999; Szewzyk ��
 	�. 2000; Miettinen ��
 	�. 2001a). These microbes probably do not

multiply in the drinking water environment, but they may survive better in biofilms (Percival

and Walker 1999,  Storey and Ashbolt 2001). LeChevallier ��
 	�� (1991) found that a high

organic carbon concentration was associated with higher concentrations of coliform bacteria in

drinking water. On the other hand, during starvation, bacteria become highly resistant to

disinfectants (Matin and Harakeh 1990).
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The growth of native non-pathogenic microbes in distribution system can still have several

undesired effects on the water quality; e.g. it can complicate bacteriological water quality

monitoring, enhance the growth of opportunistic pathogenic bacteria, iron bacteria can

precipitate iron and produce iron flocs, the growth of actinomycetes and fungi give an

unpleasent taste and odor to the water and microbial growth can promote biocorrosion of pipes

(LeChevallier and McFeters 1985; Van der Kooij 1990; Percival and Walker 1999). There are

also some pathogens like !��������	�
���������	�
	�
������	�
�����	���
�	 and ��
����	�,

which are able to grow in drinking water distribution systems (Rusin ��
	�. 1997a and 1997b;

Percival and Walker 1999; Szewzyk ��
	�. 2000). Bacteria and fungi serve as food for protozoa

and higher animals present in the distribution system (Van der Kooij, 1990; Sibille ��
	�., 1998).

In Europe, there are some national guidelines for HPC in drinking water, e. g. in Germany the

guidance value for HPC is 100 CFU/ml (Uhl ��
	�. 2001). In USA the acceptable level for HPC

is less than 500 CFU/ml, and in Canada the guideline for HPC is 500 CFU/ml (Robertson and

Brooks 2002). In Australia, the guideline is 100 CFU/ml for disinfected supplies and 500

CFU/ml for undisinfected supplies (Robertson and Brooks 2002). In Finland, the guideline for

HPC is in accordance with the European Council directive, which says that there should be no

abnormal changes in HPC (22 °C) (Council directive 1998; Soveltamisopas

talousvesiasetukseen 461/2000). The WHO guideline states that HPC is of little sanitary value,

but a good indication of the efficiency of water treatment, thus the WHO recommendation is

that the HPC concentration should be at the lowest level possible (WHO 1996; Robertson and

Brooks 2002).

The bacterial counts analysed by plate counting method depends on the characteristics of the

agar medium, incubation temperature and incubation time (Reasoner and Geldreich 1985; Block

2002; Reasoner 2002). Culturability of heterotrophic bacteria is affected also by environmental

stress like nutrient starvation and presence of electron acceptors (Block 2002; Boualam ��
 	�.

2002).

The growth of microbes in drinking water is affected by various factors like residence time

(Kerneis ��
 	�� 1995; Zhang and DiGiano, 2002), temperature (Nedwell 1999; Zhang and

DiGiano 2002), disinfection (chapter 2.1.6) and nutrients (chapter 2.3). In biofilms, also the pipe
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material and hydraulics can affect the microbial growth (chapter 2.2). Low temperatures may

decrease the affinity of microbes for substrates (Nedwell 1999).

Water treatment processes remove part of the chemical compounds and microbes from raw

water, in treated water in water distribution system there still remain some microbes as well as

the essential nutrients to support microbial growth (LeChevallier 1990; Logsdon 1990; Van der

Kooij 1992; Miettinen ��
 	�. 1996b and 1997a; Sathasivan ��
 	�� 1997; Percival and Walker

1999). In this thesis the associations between microbial nutrients, especially that of phosphorus,

microbial concentrations and microbial growth in different Finnish drinking waters were

studied. The effects of different water purification techniques on water chemistry and microbial

growth were examined. The importance of phosphorus on biofilm microbial growth was also

studied.
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6,1 ����7��8������������9���

Drinking water purification consists of various treatment processes which are deviced and

adjusted individually depending on the raw water characteristics. However, all water treatment

has some common processes e. g. chemical coagulation, ozonation, activated carbon filtration

and disinfection. In this section, some of the most widely used drinking water treatment

processes are shortly reviewed, and their effects on microbial nutrients and microbes are

discussed.

6,1,1 ���9�:���:��8�������

During chemical coagulation negatively charged particles are first neutralized. Neutral particles

can then become attached to each other and form larger particles, and these can be separated

from  water by sedimentation or flotation and rapid sand filtration. Usually iron or aluminium

salts are used for coagulation (Dennet ��
 	�� 1996; Jiang 2000; Hansen 2001). The effect of

coagulation depends on pH, coagulant and its dose and the concentration and characteristics of

the organic matter to be coagulated (Dennet ��
	�� 1996; Exall and Vanloon 2000; Hansen 2001).

Coagulation is an efficient way of removing total organic carbon and biodegradable organic

carbon (BDOC) (Singsabaugh ��
	�� 1986; Dennet ��
	�� 1996; Jiang 2000; Volk ��
	�� 2000a).

There is wide variation in the efficiency of removal of assimilable organic carbon (AOC) by

chemical coagulation. Volk ��
 	�. (2000a) found poor removal of AOC with chemical

coagulation, whereas some other studies have shown a significant reduction in AOC (Van der

Kooij 1990; Charnock and Kjønnø 2000). Chemical coagulation effectively removes

phosphorus from water (Nishijima ��
	�� 1997). It enhances the removal of microbes in filtration

(Jiang 2000) and is effective in removing also viruses from water (Gerba ��
	�� 1975)

6,1,6 �;�������

Ozonation is a commonly used technique for removing pathogenic microbes, taste and odor

from water (Anselme ��
	�� 1988; Langlais ��
	�� 1991). Ozone can also coagulate natural water

constituents and can thus be applied as a preoxidant in chemical coagulation (Glaze 1987).
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Ozone is an unstable gas, which has to be generated on-site in the waterworks. Usually ozone is

generated in water treatment by the cold plasma discharge method, where ozone is produced

from the decomposition of diatomic oxygen (Glaze 1987; Langlais ��
 	�� 1991). Ozone is a

strong oxidant, which degrades effectively natural organic matter (Glaze 1987; Kainulainen ��

	�� 1994; Karpel ��
 	�� 1996; Miettinen ��
 	�� 1998). Ozonation reduce the formation of

disinfection by-products in postchlorination (Tuhkanen ��
 	�. 1994; Kainulainen ��
 	�. 1995).

Reactions with natural organic matter increase the content of easily available organic carbon in

water, and may thus enhance microbial growth in the distribution network (van der Kooij ��
	��

1982; Van der Kooij and Hijnen 1984; Miettinen ��
	�� 1998; Escobar ��
	�. 2001; Escobar and

Randall 2001). Ozonation can lead to the formation of ozonation by-products, of particular

concern is carcinogenic bromate which is produced when water containing bromide is ozonated

(Fielding and Hutchison 1995; Myllykangas ��
	�. 2000).

Ozone is an efficient disinfectant. The disinfection mechanism is based on the reaction with the

double bonds in fatty acids of bacterial cell walls and cell membranes and the protein capsid of

viruses (Singer 1990). One disadvantage in ozone disinfection is its unstability in water, ozone

decomposes rapidly back to oxygen. At pH 8 the half life of ozone is less than one hour, which

is too short to ensure efficient disinfection throughout the distribution systems (Glaze 1987;

Singer 1990).

6,1,<� �:��������:������=���������

Activated carbon removes contaminants from water by adsorption (Culp and Culp 1974;

LeChevallier and McFeters 1990). Its high surface area is the key to efficient adsorption.

Granular activated carbon (GAC) has a surface area in the range 500-1400 m2/g (Culp and Culp

1974). GAC filters are effective in removing humic substances from water (Servais ��
	�� 1991;

Klavins ��
	�� 2000).

Often GAC filtration is used after water ozonation (Boere 1992; Hu ��
 	�. 1999). Bacteria

colonize GAC beds, and GAC filters have always some biological activity (BAC, biologically

activated carbon) which enhances the removal of organic compounds (DeLaat ��
 	�� 1985;

LeChevallier and McFeters 1990; Singer 1990; Kainulainen ��
	�. 1995; Nishijima ��
	�� 1997).

As a result of the microbial activity in BAC filter, the efficacy of the activated carbon filtration

is affected by temperature (Servais ��
 	�� 1992), pH and content the of dissolved oxygen
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(Scholtz and Martin 1997) and phosphorus (Nishijima ��
	�� 1997; Scholtz and Martin 1997).

However, Vahala ��
 	�. (1998a) found no enhanced removal of organic matter with BAC by

addition of phosphorus, although the concentration of bacteria in the filter effluent increased

significantly. BAC/GAC filters are important after ozonation because they remove

biodegradable organic carbon compounds produced during ozonation (Van der Kooij ��
 	��

1989; LeChevallier ��
	�� 1992; Servais ��
	�� 1992; Pietari 1996; Ribas ��
	�. 1997; Hu ��
	��

1999; Vahala ��
	�. 1998b and 1999).

The growth of microbes in BAC filters is high, causing some release of bacterial biomass into

the outflow (Van der Kooij ��
	�� 1989; LeChevallier and McFeters 1990. Servais ��
	�� 1991;

Pietari 1995; Vahala ��
	�. 1998a), often attached to the carbon particles (Camper ��
	�� 1986;

LeChevallier and McFeters 1990)

6,1,0 �&>��?���9���

Treated surface waters are acidic, in Finland ground waters are also often acidic (Hatva 1989;

Kivimäki 1992). To prevent the corrosion of  pipes, the water pH should be elevated, and

aggressive CO2 binded (carbonate CO3
-, bicarbonate HCO3

-) before distribution into the network

(Kajosaari 1981). In Finland, water pH is increased by Ca(OH)2, NaOH, CaO, Na2CO3 or

NaAlO2 (Kivimäki 1992; Raassina and Suokas 2001).

Lime rock (CaCO3) or dolomite (CaMg(CO3)2) filtration as a final stage treatment is becoming

more common in small waterworks in Finland (Raassina and Suokas 2001). This treatment

increases pH, hardness and alkalinity, and there is no risk for overdosing (Jacks and Frycklund

1996; Sallanko and Lakso 2000; Raassina and Suokas 2001). Alkalizing wet filtration of ground

water can remove iron, manganese, organic matter and microbially available phosphorus

(Sallanko and Lakso 2000).

6,1,/� ����=�:������:���8���=�8�����������

Ground water has many advantages over surface waters in drinking water production. It needs

less treatment, it has usually of better quality and is protected against pollutants (Hatva 1996).

Also the temperature varies less in ground water than in surface waters. In 1996, 56 % of
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drinking water in Finland was ground water, of which 9 % was artificially recharged and 9 %

bank filtrated (Hatva 1996).

Artificially recharging of ground water can be divided into two main categories. In the direct

methods, the yield of aquifer is increased by spreading surface water in permeable soil deposits

(basin recharge, sprinkling, pit recharge). In indirect methods, the yield of the aquifer is

increased by lowering the water level in wells in order to allow water flow from the nearby

surface water source into the aquifer (bank filtration) (Hatva 1996). Soil can improve water

quality in many ways. For example mechanical straining, sedimentation, adsorption and

biochemical/bacterial activities (Huisman and Olsthoorn 1983; Juhna 1999). The quality of

artificially recharged water depends on the quality (dissolved and particulate substances) of

filtrated water, the microbiology of water and filter, pore structure of the filter, surface structure

of the solid matrix, residence time of water in the filter and algae growth in the infiltration zone

and environmental conditions (Huisman and Olsthoorn 1983; Literathy and Laszlo 1996;

Schmidt 1996; Juhna 1999).

There are several studies demonstrating how artificial recharging of ground water can affect the

quality of water. It removes organic matter (Roberts and Valocchi 1981; Farooq ��
 	�. 1994;

Miettinen ��
	�� 1996a; Juhna 1999), bacteria (Eighmy ��
	�� 1992; Farooq ��
	�. 1994; Miettinen

��
 	�� 1996a;), viruses (Peters ��
 	�� 1998; Schijven ��
 	�. 2000), and some pollutants

(Schwarzenbach ��
	�� 1983; Stuyfzand and Kooiman 1996; Zullei-Seibert 1996). However, in

some conditions the number of bacteria can increase during the artificial recharge of ground

water (Eighmy ��
 	�. 1992; Albrechtsen ��
 	�� 1998). The concentration of AOC decreases

during artificial recharge of ground water (Miettinen ��
	�� 1996a and 2001b; Albrechtsen ��
	��

1998; Kivimäki ��
	�� 1998; Kuehn and Mueller 2000).

6,1,2� �����=�:����

Disinfection of drinking water is required to destroy pathogenic organisms causing waterborne

diseases. Waterworks disinfect water by ozonation (chapter 2.1.2), chlorine agents or UV-

radiation (LeChevallier 1999).
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Chlorine agents can be added to water as free chlorine, chlorine dioxide or via chloramines. Free

chlorine destroys bacteria mainly by reactions with their enzymes (White 1986), while

chloramine reacts with nucleic acids, tryptophan and sulfur-containing amino acids

(LeChevallier ��
 	�. 1988). The factors affecting the disinfection efficiency are: the chemical

nature of disinfectant, the concentration of disinfectant, the length of the contact time, the

temperature, the type and concentration of organisms and the pH (Wolfe ��
 	�. 1985; White

1986). Various chlorine compounds act differently in the distribution system. Chloramines are

much better than free chlorine in termes of residual stability, biofilm control and the tendency to

form unwanted byproducts  (LeChevallier ��
	�. 1988 and 1990; Trussel 1998; Nissinen ��
	�.

2002). Addition of chloramines may enhance ammonia oxidation by nirtifying bacteria and

increase the content of nitrite and nitrate in drinking water (Odell ��
 	�� 1996; Wilczak ��
 	��

1996).

One major disadvantage of using chlorine as the disinfectant is the formation of harmful by-

products (Boorman ��
 	�. 1999). In 1974, the formation of trihalomethanes (THMs) in

chlorination was first reported (Bellar ��
 	�� 1974; Rook 1974). Chlorination increases the

mutagenicity, mainly via the formation of  3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-

furanone (called MX), especially if the water contains a high amount of organic matter

(Vartiainen and Liimatainen 1986; Vartiainen ��
 	�� 1988; Smeds ��
 	�. 1997). Chlorine also

degrades organic matter and increases  the content of easily available organic carbon for bacteria

(AOC) (Van der Kooij 1990; Miettinen ��
	�� 1998; Charnock and Kj�nn� 2000; Lehtola ��
	�.

2001; Okabe ��
 	�� 2001). In spite of its negative effects, chlorination of drinking water is

considered to be the most effective public health measure ever instituted (Bull ��
 	�� 1995;

Boorman ��
	�. 1999).
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wastewater (Anghern 1984; Wolfe 1990; Oppenheimer ��
	�� 1997; Parrotta and Bekdash 1998;

Clancy ��
	�� 2000). The destructive effect of UV-radiation is based on DNA and RNA damage

such as thymine dimer formation, hydrate formation in the DNA, denaturation of the DNA

double strand and polymerization between nucleic acids and proteins. (Anghern 1984; Wolfe

1990; Parrotta and Bekdash 1998). The absorption maximum of DNA and RNA 255-265 nm is

near the wavelengths emitted from mercury low pressure lamps (253.7 nm). Most

microorganisms are inactivated by relatively low UV254 dosages – usually in the range of 2-6
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mWs/cm2, though viruses tend to be more resistant to UV254 radiation than bacteria (Wolfe

1990). Bacteria posses photoreactivation mechanisms at wavelengths of 300-500 nm to repair

damaged DNA (Harris ��
 	�� 1987; Wolfe 1990). Some water quality parameters like iron,

manganese and organic matter can affect UV-disinfection (Parrotta and Bekdash 1998).

Guidelines for UV-disinfection require UV254 radiation doses of 16-38 mWs/cm2 throughout

the water disinfection chamber (Parrotta and Bekdash 1998).

UV254 radiation degrades organic matter (Armstrong ��
	�� 1966; Corin ��
	�� 1996; Kulovaara ��

	�. 1996), with the simultaneous release of phosphate (Armstrong ��
 	�� 1966; RonVaz ��
 	��

1992; Vähätalo and Salonen 1996). There is no evidence of the formation of undesirable by-

products (mutagenicity) or any increase in the content of biodegradable organic carbon after

UV-disinfection (Wolfe 1990; Kruithof ��
	�� 1992; Shaw ��
	�� 2000a).

Disadvantage of UV-disinfection is similar to ozonation, the lack of residual activity in the

distribution system (Wolfe 1990). Some residuals inhibiting bacterial growth after UV254-

irradiation can occur, probably attributable to hydroxyl radicals produced in the photochemical

reactions when UV reacts with water organic matter (Gjessing and Källqvist 1991; Lund and

Hongve 1994). Kruithof ��
	�� (1992) suggested that UV-disinfection is especially suitable for

drinking waters with low nutrient concentrations (AOC) to prevent microbial regrowth in the

distribution networks.

6,6  ��=��9����������������������������7

The deterioration of water microbiological quality in the distribution system is one of the main

problems faced in drinking water production (Laurent ��
	�� 1993). Microbial cells can become

firmly attached to almost any surface in an aquatic environment (Characklis and Marshall 1990).

In drinking water distribution networks, bacteria in biofilms represent the most important part of

the bacterial biomass (Laurent ��
	�� 1993; Zacheus ��
	�� 2001) and detachment of bacteria from

biofilms accounts for most planktonic cells present in the water (Van der Wende ��
	�� 1989).

Other problems caused by the occurrence of biofilms are: bacteria are part of the food web and

support the growth of higher organisms, they may generate turbidity, taste and odors, high

counts of heterotrophic bacteria interfere with the detection of coliforms, microbes cause

biocorrosion and they increase frictional resistances in the distribution system (Block 1992;
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Critchley ��
	�� 2001). Biofilms can also promote the survival and growth of pathogenic bacteria

and enhance the survival of viruses and parasites (LeChevallier ��
 	�� 1987; Keevil 1989;

Buswell ��
 	�� 1998; Ford 1999; Percival and Walker 1999; Storey and Ashbolt 2001) and

increase the disinfection resistance of bacteria (LeChevallier ��
	�� 1987 and 1990; Percival and

Walker 1999; Gilbert ��
	�. 2002). In biofilms, there is an accelerated transfer of genetic material

by conjugation (Angles ��
	�. 1993; Hausner and Wuertz 1999; Ghico 2001). This may cause

conjugational spread of virulence factors, antibiotic resistance and enhanced environmental

survival capabilities of the bacteria (Watnick and Koltner 2000; Ghico 2001).

Many factors can influence the formation of biofilms on the surfaces of the pipeline e.g.

microbial nutrients, pipe materials, disinfectants, bacteria from water and the hydraulic regime

(Block 1992; Mathieu ��
	�� 1994; Van der Kooij ��
	�� 1995; Camper ��
	�� 1996; Niquette ��
	�.

2000; Zacheus ��
	�. 2000). Biofilms are dynamic, there is continual attachment and detachment

of microbes, their death and regrowth (Block 1992; O´Toole ��
	�� 2000; Watnick and Kolter

2000). After attachment to a surface, bacteria often undergo adaptation to life in a biofilm. For

example, there is an increase in synthesis of exopolysaccharides (O´Toole ��
	�� 2000; Watnick

and Kolter 2000). In drinking water distribution networks in general, organic carbon is the

limiting nutrient for microbial growth in biofilms (Block 1992; Block ��
	�. 1993; Laurent ��
	��

1993; Van der Kooij ��
	�� 1995; Chandy and Angles 2001; Appenzeller ��
	�. 2001).

Some countries use phosphate based anticorrosion chemicals in their distribution systems. There

is no evidence that these chemicals increase microbial numbers (Abernathy and Camper, 1998;

Chandy and Angles 2001; Rompré ��
 	�� 2000; Volk ��
 	�. 2000b; Appenzeller ��
 	�� 2001).

Phosphates can have a positive impact by controlling corrosion (e.g. lead and iron) (Abernathy

and Camper 1998; Rompré ��
	�� 2000; Appenzeller ��
	�� 2001 and 2002). The  efficiency of

phosphates for biofilm control is based on neutralization of positively charged corrosion

��������%� ����� ��� ��
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%� ��� �
�����
��� �����
�� #
!-4 and thus lowering the

adhesion of bacteria to pipe surfaces (Abernathy and Camper 1998; Appenzeller ��
	�. 2002).

It is difficult to prevent the formation of biofilms by disinfection with chlorine since it requires a

residual concentration >1-2 mg/l (LeChevallier ��
	�. 1987; Van der Wende ��
	�� 1989; Block

1992). Inactivation of fixed bacteria in biofilms needs even an higher concentration of chlorine

(> 3 mg/l) (LeChevallier ��
	�� 1990; Paquin ��
	�� 1992). The inactivation efficiency depends on
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the composition of the pipe material (LeChevallier ��
 	�� 1990), the disinfection agent

(chloramine vs. chlorine) (LeChevallier ��
 	�� 1988; Block 1992), temperature and water

velocity (Characklis 1990).

6,<� �����������������7��8�����������9�:�������8�����
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Organisms with the exception of photoautotrophs and chemoautotrophs need organic

compounds both for their carbon and energy sources. Organic compounds are partially

assimilated into the cell material and partially oxidised to provide energy (Schlegel 1997). The

polysaccharides, cellulose and starch, are commonly found organic compounds in the biosphere.

Glucose and other sugars are the preferred nutrients for most heterotrophic microorganisms

(Schlegel 1997).

Bacteria can utilize a wide range of substrates, but some substrates are more readily usable than

others. According to Van der Kooij ��
	�� (1982a), most amino acids and many carboxylic acids

and carbohyhrates are utilized by ���������	�
 ����
������
 in preference to aromatic

compounds.

In drinking water, all of the organic carbon is not available for microbial growth. Usually only a

small part of total organic carbon is easily utilized by microbes (Van der Kooiij 1982b). There

are some analytical methods available to determine this biodegradable portion of organic

carbon.

��	������

There are two approaches to analyse the microbial usability of aquatic natural organic matter:

determination of assimilable (available) organic carbon (AOC) or biodegradable organic carbon

(BDOC). AOC is that part of organic matter that can be converted to cell mass and expressed as

a carbon concentration by means of a conversion factor, BDOC is the part of organic carbon

which can be mineralized by heterotrophic microbes (Servais ��
	�. 1987; Huck 1990).
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The first method for AOC assay was published in 1982 by Van der Kooij ��
	�� (1982b). After

that,  many studies were published to improve the method (Huck 1990). At present, the AOC

test is the proposed standard method according to Standard Methods (1995). The test is based on

the growth of a bacterial inoculum in a water sample and AOC is calculated using empirical

yield values. The bacterial strains used in the test are ���������	�
����
������ strain P-17 and

 ��
����� strain NOX (Standard Methods 1995). In regions where there is a high content of

organic matter and limitation of phosphorus, some modification of the test is required. Miettinen

��
	�� (1999) modified the test by adding inorganic nutrients to the water sample to ensure that

only organic carbon would limit the bacterial growth in the water, and suggested the term

AOCpotential should be used.

Servais ��
	�� presented the first method for BDOC in 1987. In that method organic carbon was

mineralized by the natural microbial community, and BDOC was measured as the difference in

content of dissolved organic carbon (DOC) before and after (>10 days) incubation of the

inoculated water sample (Servais ��
 	�� 1987). DOC is nowadays usually analysed with

����������'������
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1995). Later methods were developed where the water sample was filtered through a column

where the microbes were attached via a biofilm to the support matrix (e.g. glass, sand), and the

difference in DOC between inlet and outlet was analysed (Lucena ��
	�� 1990; Frias ��
	�� 1992).

Only a small part of total organic carbon is easily utilized by microbes (Van der Kooij ��
	��

1982a and b). LeChevallier ��
	�� (1991) proposed that to limit the growth of coliform bacteria in
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the BDOC, it has been proposed the guideline value of 0.15 mg/l for biologically stable water

(Servais ��
 	�� 1995). Because only two bacterial strains are used in AOC analysis, the

concentration of AOC is lower than content of carbon obtained in the BDOC method (Frias ��

	�� 1995; Standard Methods 1995).

6,<,6 
���������

Phosphorus occurs in nature only in the form of chemical compounds, either as inorganic

orthophosphate (HPO4
2-, H2PO4

-) or in organic compounds. Total phosphorus can be subdivided
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into particulate phosphorus and soluble phosphorus. Furthermore, soluble phosphorus can be

divided into soluble reactive phosphorus and soluble unreactive phosphorus (Holtan ��
	�� 1988).

Particulate phosphorus consists of adsorbed, exchangeable phosphorus, organic phosphorus,

precipitates, reaction products with Ca2+ , Fe2+ , Al3+ and other cations as well as crystalline

minerals and amorphous phosphorus. The soluble form of phosphorus is normally though to

consist of  orthophosphate, inorganic polyphosphates and dissolved organic phosphorus (Holtan

��
	�� 1988). The distribution of different species of orthophosphate (H3PO4, H2PO4
-, HPO4

2-, or

PO4
3-) is pH-dependent (Holtan ��
	�. 1988). In a humus-rich environment, phosphorus becomes

associated with higher molecular weight humic materials, especially in the presence of iron or

manganese (Jones ��
	�� 1988; Shaw ��
	�. 2000b; Hens and Merckx 2002). A large part of the

identified organic phosphorus fraction is represented by inositol phosphates, phospholipids,

nucleic acids, organic acids and phosphate esters (Stevenson 1982). Organic phosphorus can be

hydrolysed to inorganic forms through chemical and/or biological reactions (Holtan ��
	�� 1988),

or by reactions driven by UV-radiation (Armstrong ��
	�� 1966; Ron Vaz ��
	�� 1992; Vähätalo

and Salonen 1996; Tranvik 1998). Phosphorus combined to biological material (bacteria,

phytoplankton) can comprise a large fraction of the total phosphorus in lake water (Jones 1997).

Phosphorus is an essential nutrient for microbes since it is one of the macronutrients which are

present in all cells (Schlegel 1997). When the phosphorus concentration is sufficient, bacteria

like ��
����, use a low affinity Pi transport system known as Pit system. In phosphorus deficiency

this system is inefficient and the Pho regulon genes turn on, inducing alkaline phosphatase

activity (Ammerman 2002). Pho regulon is also a code for proteins that facilitate phosphorus

assimilation in phosphorus deficient conditions, including the high affinity Pst transport system

for phosphate (Ammerman 2002).

Bacteria need phosphorus for the biosynthesis of nucleic acids, lipopolysaccharides and

phospholipids (Jones 1997; Schlegel 1997). Phosphate is a vital component of the intracellular

energy- transferring ATP system (Jones 1997; Schlegel 1997). The main fraction of

phopsphorus in bacterial cell is DNA + RNA + lipids, constituting approximately 60 % of the

total cell phosphorus, other fractions are cytoplasmic phosphate (organic and inorganic) and

polyphoshate (Vadstein 2000). This is apparent in the optimum C:N:P ratio for bacterial growth

which is 100:10:1 (Van der Kooij 1982b; Zhang and DiGiano 2002). According to Anderson
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and Domsch (1980) the ratio of C:P in bacterial cells is 17. Similarly, Gächter and Meyer (1993)

reported the C:P ratio in bacteria to be 20. In an environment with a high phosphorus

availability, the C:P ratio can be as low as 5, corresponding to a phosphorus content of 10 % of

the dry weight (Gächter and Meyer 1993). In the study of Hochstädter (2000), the C:P ratio in

bacteria in a lake varied between 50-130 being highest in phosphorus limiting conditions during

the summer. With phosphorus limitation, the phosphorus content in the bacteria depends also on

the specific growth rate (Vadstein 2000). In a lake ecosystem, there is evidence that bacteria

may also act as a sink of the available phosphorus and thus also heterotrophic bacteria can be

important consumers of inorganic phosphorus (Vadtstein 2000). Various bacterial strains have

different maximum specific phosphorus uptake rates, affinities and half saturation constants (km)

for phosphorus, the km� ����
�� ���� ����� �
��
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different bacterial strains (Vadstein 2000).

Heterotrophic bacteria can store polyphosphates in granules, which serve as a storage site of

phosphorus to be used via the polyphosphate kinase for synthesis of nucleic acids and

phospholipids during external phosphorus limitation (Schlegel 1997; Vadstein 2000).

Polyphosphates are accumulated when phosphate is present but microbial growth is terminated

by a growth limiting factor or the presence of a growth inhibitory agent (Schlegel 1997). Under

aerobic conditions, bacteria can store polyphosphates also as an energy reserve for later use.

Stored polyphosphate is transformed to ATP and the use of ATP leads to phosphate release

(Waara ��
	�� 1993).

In terms of its nutrient status, soluble inorganic phosphate is considered to be entirely

biologically available (Chapelle 1992; Jones 1997). All living organisms posses the enzyme,

alkaline phosphatase, to convert organic phosphorus to inorganic phosphorus, but only microbes

and fungi can excrete the enzyme outside of their cells (exoenzymes), for remineralization and

dissolving of organic phosphates (Jones 1997). Also the hydrophobicity or hydrophilicity of the

phosphorus compounds can affect the availability of phosphorus for microbial use (Lemke ��
	�.

1995). Acid phosphatases are active in the internal cell metabolism (Jansson ��
	�. 1988). The

synthesis of external alkaline phosphatases is often repressed at high phosphate concentrations

(Jansson ��
 	�� 1988). The synthesis of external alkaline phosphatases has been used as a

phosphorus deficiency indicator (Jansson ��
	�. 1988).
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Chemical phosphorus analysis has two steps: 1) conversion of phosphorus compounds to

dissolved orthophosphate, and 2) colorimetric determination of the dissolved orthophosphate.

According to the Finnish standards, phosphorus is analysed by the ascorbic acid method, where

ammonium molybdate and potassium antimonyl tartrate react in an acid medium with

orthophosphate to form phosphomolybdic acid, which then reacts with ascorbic acid forming the

colored compound molybdenum blue, which can be analysed with a spectrophotometer

(Standard Methods 1995; SFS 3026, 1986). In analysing total phosphorus, all phosphorus

compounds are digested with peroxodisulphate to orthophosphate (SFS 3026, 1986). With these
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(SFS 3026, 1986; Standard Methods 1995, respectively). When analysing orthophosphate, there

are some problems encountered in the analytics. Baldwin (1998) and Stainton (1980) showed

that part of organic or colloidal phosphorus compounds is hydrolysed/displaced during the

analysis and there can be an overestimation on the concentration of orthophosphate.

There also are some other sensitive analytical methods for analysing phosphorus from water.

The magnesium-induced coprecipitation procedure (MAGIC) can analyse phosphorus

concentrations down to 31 ng/l P (Karl and Tien 1992). A fast method for analysing phosphate

was developed utilizing capillary electrophoresis, but the sensitivity of this method is rather low
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organically combined phosphorus is converted to orthophosphate by UV-radiation in an excess
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	�� 1992).

There also are bioassays to analyse algal-available phosphorus (see review by Ekholm 1998).

6,<,< ���������������

In addition to phosphorus, the other essential macronutrients for cells are hydrogen, oxygen,

nitrogen, sulphur, sodium, potassium, calcium, magnesium and iron (Schlegel 1997). These

nutrients generally do not limit heterotrophic microbial growth in drinking waters (Miettinen ��

	�� 1996b and 1997a). Ammonia may enhance the growth of chemolithotrophic ammonia

oxidizing and nitrite oxidizing bacteria (Odell ��
	�� 1996; Wilczak ��
	�� 1996).
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Since the first article was published to determine the concentration of easily assimilable organic

carbon (Van der Kooij ��
	�. 1982b), there has been much  research undertaken on the effects of

nutrients on the microbial growth in drinking water. Genereally speaking, microbial growth in

drinking water is limited by assimilable organic carbon (AOC) or biodegradable organic carbon

(BDOC) (Van der Kooij ��
	�� 1982b, LeChevallier 1990; Joret ��
	�� 1991; Mathieu ��
	�� 1992;

Van der Kooij 1992; Servais ��
	�� 1995, Prévost ��
	�. 1998; Niquette ��
	�. 2001). This is due to

the low content of AOC compared to phosphorus; e.g. in an American study the C:P ratio in

drinking water was found to be in the range 100:250 to 100:43, while the typical ratio for

optimal microbial activity is 100:1 (Zhang and DiGiano 2002). Fransolet ��
	�� (1988) found that

bicarbonate/sodium could limit microbial growth in some oligotrophic waters.

In some areas, the correlation between AOC and heterotrophic growth response is weak (Noble

��
 	�� 1996; Zhang and DiGiano 2002) or there is no correlation at all (Gibbs ��
 	�� 1993;

Miettinen ��
	�� 1997b). Kerneis ��
	�� (1995) found no correlation between BDOC and growth

of heterotrophic microbes in a drinking water distribution network.

In lakes and rivers, microbial growth is many times limited by phosphorus (Haas ��
	�� 1988;

Coveney and Wetzel 1992; Mohammed ��
 	�� 1998; Hochstadter 2000; Hudson ��
 	�� 2000;

Vadstein 2000). In 1996 it was found that in Finland microbial growth in drinking water is

limited by the availability of phosphorus (Miettinen ��
 	�� 1996b and 1997a). Subsequently

similar  results were published also from Japan (Sathasivan ��
	�� 1997; Sathasivan and Ohgaki

1999). In recent studies some indirect evidence for nutrient limitation other than organic carbon

has come from Norway, where inorganic nutrient addition resulted in a higher AOCpotential

content than when the AOC was analysed without nutrient addition (Charnok and Kjønnø 2000).

This means that nutrients other than organic carbon limited  microbial growth. Also, in Latvia,

in the Riga water distribution system, phosphorus limits microbial growth in the distribution

system where drinking water is produced from surface water (Juhna and Nikolajeva 2000). In

Berlin, it was found that no polyphosphate granules occurred in �"�	�	���
���
spp. growing in

drinking water, but in pure cultures grown in artificial medium, polyphosphate granules were

presented. This was considered to indicate a regulatory role of phosphorus in drinking water

(Szewzyk ��
	�� 2000).
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In regions where microbial growth in drinking water is limited by phosphorus, very low

amounts of phosphorus greatly increased the microbial growth. A major increase was achieved

����� ���������� ��� &'(� �	�� !-4-P in the phosphorus limited drinking waters (Miettinen ��
 	��

1997a; Sathasivan ��
	�� 1997). Sathasivan and Ohgaki (1999) reported that phosphorus could

�
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In this thesis the effect of nutrients, especially that of phosphorus on microbial growth in

Finnish drinking waters was studied. The specific aims were:

1. To develop a test for analysing microbially available phosphorus in water (I).

2. To study the effects of different water purification techniques on the contents of

microbial nutrients (organic carbon and phosphorus), microbial concentrations and

growth potential  (II, III, IV).

3. To study the relationship between MAP and microbial growth in drinking waters (II, III).

4. To study the effect of phosphorus availability on the formation of biofilms in drinking

water (V).
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Phosphorus standards were made in deionized water (Millipore, UK). Six  milliliters of

inorganic nutrient solution was added to the 94 ml of water to ensure that only phosphorus

among the inorganic nutrients was limiting growth. Addition of inorganic salts meant that the
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water in general. The salt solution consisted of (NH4)2NO3, MgSO4 x 7 H2O, CaCl2 x 2 H2O,

KCl and NaCl (Merck, Darmnstadt, Germany). After addition of the salt solution, the standard

water had 15 mg/l  N, 0.6 mg/l Mg, 1.6 mg/l Ca, 3.2 mg/l K, 2.4 mg/l Na and 8.9 mg/l Cl. For

the carbon source, sodium acetate (CH3COONa) was added to a final concentration of 2 mg/l C.

Standards were made by adding different amounts of  phosphorus (Na2HPO4, Merck) to the

����
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��������������
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����������(����&�� �	�

PO4-P. After addition of inorganic nutrients and carbon, the standards were pasteurized at

+60°C in a water bath for 35 min. After cooling, the samples were inoculated with

���������	�
 ����
������
P17 biotype 7.2  (ATCC 49642) (appr. 1000 CFU/ml). Strain P17

was tested for phosphatase activity by a fluorometric method with 4-

methylumbelliferylphosphate-Na2 salt (Fluka, Buchs, Switzerland) as the substrate (the method

is described in Miettinen ��
	�� 1996a).

Inoculated samples were incubated at +15 °C to obtain the maximum cell numbers. The

bacterial cells in sample water were enumerated daily by spread plating on R2A-agar (Reasoner

and Geldreich 1985). The plates were incubated at 22 °C for three days before colony counting.

Standardization was repeated with four standard series with different phosphorus

concentrations. Every standard set contained 3-6 different concentrations of phosphorus and a

blank sample.
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Inorganic nutrients (except phosphorus) and organic carbon (see above standardization

procedure) were added to the samples to ensure that inorganic nutrients or organic carbon did

not restrict microbial growth. The final concentrations of added nutrients in the samples were

�(�� �	��;%�(+� �	��3%�&�� �	��1�%��,� �	��"�%�/�� �	��;� ����&/5� �	��"���0��������
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M sodium thiosulphate. After addition of nutrients and thiosulphate, samples were pasteurized

and finally inoculated with ���������	�
����
������
P17.

Water samples were incubated at +15 °C. The growth of bacteria in water samples was

enumerated every day during 4-8 days from the inoculation by spread plating on R2A agar

(Reasoner and Geldreich 1985), plates were incubated for 3 days at +22±2 °C before counting.

The maximum plate counts of ���������	�
����
������
P17 were transformed to the amount of

microbially available phosphorus with a conversion factor  taken from the calibration curve of

the standardization.

0,1,6� �==�:����=��;��������$��'

In substudy II, water samples were taken from five Finnish surface water works which utilized

ozonation (Table 1). The waterworks used ozonation after chemical coagulation (intermediate

ozonation), and waterworks S9 used pre-ozonation of raw water. Water samples were taken

before and after ozonation. One experiment was done by ozonating chemically purified water

from the Kuopio waterworks in a laboratory scale ozonator (1.5 mg/l O3) (described in

Myllykangas ��
	�� 2000). Waterworks S3, S8 and S12 used river water as raw water and S5, S9

and S10 lakewater. The ozonation doses used in the waterworks varied between 1.0-1.98 mg/l

O3.

0,1,< )���������=�:��������:���C����$���'

In substudy III, water samples were taken from 21 waterworks in Finland (Table 1). The

samples originated from different purification stages and raw waters. Six surface waterworks

(S1, S2, S5, S6, S9 and S10) used lake water as their raw water and five waterworks (S3, S4, S7
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S8 and S11) used river water. All waterworks processing artificially recharged ground water

(ARG) used lake water as their raw water, three waterworks infiltrated water through soil and

one applied bank filtration (A3). The waterworks using ground water usually only adjusted pH

without any other treatment. In some ground waterworks (G5 and G6), iron removal was

required.

0,1,0� �==�:����=�+!>�����=�:�����$�!'

In substudy IV, samples were taken before and after UV-disinfection from three Finnish

waterworks (Table 1). Waterworks G6 and G7 used ground water as the raw water, UV-

disinfection doses were 15 mWs/cm2 and 40-50 mWs/cm2, respectively. Waterworks S13

produced drinking water from surface water, the UV254 dose was 25 mWs/cm2. Laboratory scale

UV-irradiation experiments were carried out with three different drinking waters taken from

Finnish waterworks. Sample G7 taken before UV-disinfection, was irradiated in the laboratory.

Samples A5 and S5 were taken from waterworks using lake water as the raw water.

UV254-irradiation was carried out in the laboratory with 10 parallel Philips UV 15 W low

pressure mercury vapor lamps. Water samples (500 ml) were placed in circular glass bowls

under the lamps. Samples were irradiated for 5, 22 and 54 seconds, i.e. the UV254-doses were 46,

204 and 501 mWs/cm2 at the surface of the water sample. Water samples were mixed effectively

during the irradiation to ensure dose uniformity. Based on the transmittance of 253.7 nm light in

the water samples used in laboratory experiments, we estimated the dose of UV254 in the bottom

of glass bowl. Based on these results, the actual UV254-irradiation doses in sample G7 were 34-

46 mWs/cm2 (bottom-surface of water in glass bowl), 152-204 mWs/cm2 and 373-501

mWs/cm2, in sample A5 the doses were 21-46 mWs/cm2, 95-204 mWs/cm2 and 232-501

mWs/cm2, and in sample S5 the doses were 23-46 mWs/cm2, 101-204 mWs/cm2 and 247-501

mWs/cm2. Due to the tapered shape of the glass bowl, the higher values were considered to be

more close to the real doses than the lower values.
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����� 1. Sample codes and water treatments in studied water works. Water works applying
ozonation (O3) had also granulated activated carbon filtration (GAC).

)����������9���
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Sample
code

substudy treatment pH-adjustment disinfectant

G1 I, III none lime none
G2 I, III none lime ClO2

G3 I, III none none none
G4 III none NaOH none
G5 III air + lime lime + H2CO3 NaOCl
G6 I, III, IV SF limestone filtr. UV
G7 IV rapid sand filtr. limestone filtr. NaOCl + UV

����=�:����B���:���8���8�����������

substudy filtration pH-adjustment disinfectant
A1 I, III infiltration on soil(1 limestone filtr. none
A2 I, III infiltration on soil lime none
A3 III bank filtration none none
A4 III infiltration on soil lime NaOCl
A5 IV bank+slow sand

filtr
NaOH NaOCl

���=�:��������

substudy coagulant oxidant pH-adjustment disinfectant
S1 I, III alum ClO2 lime NaOCl
S2 III alum O3

(2 lime NH2Cl
S3 I, II, III alum O3 lime NH2Cl
S4 III Fe (III) salt (+SF) none lime NH2Cl + Cl2

S5(3 I, II, III,
IV,V

alum none lime NaOCl

S6 I, III alum none lime NaOCl
S7 III Fe(III) salt (+GAC) none NaOH NH2Cl
S8 II, III PAC O3

(4 lime NaOCl
S9(5 II, III PAC O3

(6 lime NaOCl + NH4Cl2

S10(7 II, III alum O3 lime NH2Cl
S11 III PAC O3

(8 lime NH2Cl
S12 II Fe(III) salt O3 lime NaOCl + NH4Cl2

S13 IV PAC none Na2CO3 UV+NaOCl
Symbols: PAC, polyaluminum chloride; SF, slow sand filtration

1) After infiltration also slow sand filtration
2) No GAC after ozonation
3) Raw water was first bank filtrated (waterworks A4)
4) After ozonation slow sand filtration
5) Purified water was mixed with unpurified ground water (appr. ½)
6) Water was ozonated before coagulation
7) Same waterworks as S2, after GAC was applied
8) Also pre-ozonation was used before coagulation
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Biofilm development was studied with polyvinyl chloride (PVC) slides, with water for the

experiment being taken from waterworks S5 before disinfection. Microbial growth of the water

was limited by phosphorus availability. The slides (surface area 15.9 cm2) were placed into PVC

chambers at room temperature (21 °C). The PVC chambers were covered with aluminium foil.

All materials contacted with water were treated (20 h) with sodium hypochlorite solution of 10

mg/l Cl2 and rinsed with sterile distilled water before use. Water was pumped with total (feeding

water + phosphorus solution, 16:1) flow velocity of 1 ml/min to the chambers. Phosphorus
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������������
����� ������
�����
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�������
���������
�������+��</���3

corresponding to a water retention time of 5 h in the chamber. The growth of biofilms was

monitored 12 times during the 72 day experiment.

For the analyses, slides were first rinsed slightly with sterile water, then put into a sterile 100 ml

flask and 10 ml of sterile water was added. The flasks were sonicated (40 kHz) in a water bath

for 5 minutes (Finnsonic mO3, Finland), the extracts were analysed for microbial occurrence. At

every sampling time, two slides from two parallel columns were taken for analyses.

0,6 ���9�:�������9�:�������8�:�������B���

0,6,1 *��������

All glassware (Pasteur pipettes, tubes, Erlenmeyer flasks with glass-stoppers) and plastic pipette

tips were first washed with phosphate free detergent (Deconex, Borer Chemie AG, Switzerland),

then immersed in 2 % HCl solution for 2 hours and then rinsed with deionized water (Millipore,

UK). Finally, clean glassware was heated for 8 hours at +250°C.
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Total non-purgeable organic carbon (TOC) was analysed by a high temperature combustion

method with a Shimadzu 5000 TOC analyser (Kyoto, Japan). Water was acidified and purged

before analysis.

����9���������8���:�:������$�>!'

Assimilable organic carbon (AOC) was analysed by a modification (Miettinen ��
	�� 1999) of

the Van der Kooij method (1982b). The determination of the AOC concentration was based on

the maximum growth of ���������	�
����
������ P17 (ATCC 49642) and  ��
����� sp. strain

NOX (ATCC 49643) in the water sample. The modification included addition of inorganic

nutrients to ensure that only the AOC content restricted microbial growth, i.e. AOC was

measured as AOCpotential (Miettinen ��
	��
1999). With ��
����
������ the growth corresponded to

acetate equivalents and with  ��
����� NOX to oxalate equivalents. In water samples containing

�������
%��
��������������
������
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�������������(�� �������1������&�����
�������

thiosulphate.

��8���:��:����$�!'

The organic acids were measured using Dionex ion chromatography (IC) (USA). The

measurements were conducted with series 4000 I instrument with the Ionpac AG11-HC Guard

Column (4*50 mm), and Ionpac AS11-HC Analytical Column (4*250 mm). Anion Trap

Column (ATC-1) was used for eluent clean up. The size of the injection loop was 392-µl. An

on-guard H+ cartridge was installed on-line between the autosampler and the sample loop. The

self-regenerating suppressor was ASRS-ULTRA (4-mm). As a preservative, 25 mg/l

benzalkonium chloride was added to the samples. The IC run program consisted of equilibration

(1 mM NaOH for 9 min), injection, isocratic analysis (1 mM NaOH for 8 min), and three

gradient phases (from 1 to 15 mM NaOH during the following 10 min, from 15 to 30 mM

NaOH during the next 10 min, and from 30 to 60 mM NaOH during the last 10 min). The eluent

flow rate was 1.5 ml/min. During the equilibration, the sample was loaded to the sample loop

with a flow of 1 ml/min.



39

����:��������8���=��:������$�!'

The molecular weight fractions of organic matter in UV-experiments were determined with a

high performance size exclusion chromatography (HPSEC) system, which consisted of a Waters

996 photodiode array detector (USA), Waters 600E system controller (USA) and Waters 717

autosampler (USA). Samples were prefiltered with 0.22 µm Millipore filters before analyses.

Molecular weight fractions were separated with a TSK Gel SW guard column and TSK Gel

G3000SW analytical column (Tosohaas, Japan). The eluent was 0.01 M, pH 7 sodium acetate.

The absorbance of the fractions was detected at 254 nm. The peak area of the various fractions

was used in the analysis of the results.

0,6,< 
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Total phosphorus (total P) was analysed by an ascorbic acid method according to the Finnish

standard (SFS, 3026) at 880 nm wavelength using 1 (IV), 4 (II, III) or 5 (V) cm light path with

Philips PU8700 (England) (II, III), Ultrospec 3000 Pro (IV) (England) and Shimadzu UV-1601

(V) (Australia) spectrophotometer

Microbially available phosphorus (MAP) concentrations were analysed by bioassay (I) (see

4.1.1)

0,6,0 &�����������:�������:������$�>!'

Heterotrophic plate counts (HPC) were analysed by the spread plating method on R2A-agar

(Difco, USA) (Reasoner and Geldreich 1985). R2A-agar plates were incubated for 7 days at 22

°C before the colony forming units (CFU) were counted.

0,6,/ 
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Total numbers of bacteria were analysed by an acridine orange direct counting method based on

the method of Hobbie ��
 	�� (1977). Bacteria were filtered on a black 0.22 µm Nuclepore

membrane filter and stained with 0.01 % acridine orange dilution. Bacteria were counted with
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an Olympus BH-2 epifluorescence microscope (Olympus Optical co., Tokyo, Japan) using an

eyepiece micrometer (Graticules Ltd., Tonbridge, U.K).

0,6,2 *�����������������=���:������$��>�!'

The growth potential of native heterotrophic microbes in water was analysed with and without

phosphorus addition by incubating the samples (100 ml) at 15 °C in the dark. Bacterial growth

was followed for three weeks by spread plating every second or third day on R2A-agar plates

(Difco) (Reasoner and Geldreich 1985). Phosphorus was added as Na2HPO4 (Merck) to obtain

an extra concentration of 20 µg/l PO4-P in water. R2A-agar plates were incubated for 7 days at

22 °C before colony forming units (CFU) were counted. In the results, maximum microbial

numbers obtained during the water incubation are reported. In substudy II, all water samples

were inoculated with one natural microbial community taken from drinking water S5.

0,6,4 ����������������������.��
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In the biofilm experiments, 200 µl of the sonicated extract was mixed with 100 µl ATP

releasing reagent (1620150 Labsystems, Finland), 200 µl ATP monitoring reagent 5000 (1243-

247 Bio Orbit, Finland) and 500 µl buffer (0.1 M Tris acetate, 2 mM EDTA) (1243-227 Bio

Orbit, Finland). Light production in millivolts after addition of the reagents was measured with

an Bio Orbit 1251 luminometer (Finland). The measured light output was converted to ATP

concentration by using conversion factor determined from the standards (ATP standard, 1243-

201 Bio Orbit, Finland).

0,< ��������:�������B���

Statistical differences in nonparametric data were tested by Wilcoxon signed ranks test. The

effect of phosphorus in biofilms was tested with one-way analysis of variances and Tukey´s

multiple comparison test. Analyses were performed with SPSS for Windows program. Pearson

correlations were calculated with Microsoft Excel 97 and SPSS for Windows programs.
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There was a linear relationship between maximum cell count of ��
 ����
������ P17 and the

���������������
��������������
�����
����(����&�� �	��!-4-P (Fig. 1). The maximum cell count

was generally reached after an incubation time of 4-8 days.�2���
�&�� �	��!-4-P, there was no

longer any linear relationship between the phosphorus concentration and bacterial growth. The

�
�
������ ������ ��� ��
� ��������� ���� ��� � �	�� !-4-P (Fig. 2), which was determined by the

mathematical technique of Hubaux
and Vos
(1970). The yield factor was derived from the slope

of the line when cell growth was plotted against PO4-P concentration. The equation indicated

�����&� ��!-4-P corresponded to 3.73 x 108 CFU of ��
����
������.

%�8����1. Relationship between the growth of ��
 ����
������ and phosphorus concentration in

MAP standardization. The regression equation is y = 373 200x-10000 (I).
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%�8����6,�Determining the detection limit with 95 % confidence limits for the MAP bioassay.

=
�
������������������
��
����������� � �	��!-4-P (I).

/,6 �==�:��� �=� ��==������ ������ �����9���� ��:���C���� ��� 9�:������� ���������� ���

9�:�������8�������������7��8������

Summary of the effects of different water treatment techniques on drinking water nutrients and

microbial growth is presented in table 2 (page 45).

/,6,1 ���9�:���:��8��������$���'

Chemical coagulation removed 52 % of the TOC (p=0.003), 73 % of the AOCpotential (in two

waterworks AOCpotential increased in coagulation), 84 % of the total phosphorus (p=0.010) and

97 % of the MAP (p=0.028). Also microbial concentrations (73 % of the total bacteria p=0.007,

and 86 % of the HPC, p=0.026) decreased (III, Table 2). The decrease in contents of nutrients

was associated with a decrease in the growth potential of heterotrophic bacteria (p=0.033) (III,

Table 2). Waters produced in waterworks where ferric or alum salts were used in the

precipitation stage were often toxic to the test bacterium ��
 ����
������.
 PAC removed

AOCpotential, while the alum salt coagulant even increased it.

0,0 0,1 0,2 0,3 0,4 0,5
0,0

0,5

1,0

1,5

2,0

2,5

3,0

x
D

R2=0.90

10
5  C

F
U

/m
l

µg PO
4
-P/l



43

/,6,6 �;��������$��.����'

Ozonation increased strongly the content of AOCpotential (p=0.001) (II, Fig. 2; III, Table 2). The

increase varied between 0 and 847 % and was on average 310 %. The TOC concentration

decreased on average by 6 % (p=0.008). The concentration of total phosphorus did not change

with ozonation, but the content of MAP increased on average by 79 % (p=0.016) (II, Fig. 1; III,

Table 2). The increase in the nutrient content was followed by an increased growth potential of

heterotrophic bacteria, microbial growth in water sample was on average 4.6 times higher after

ozonation than before it (II, III, Table 2) (p=0.004). Ozone decreased the numbers of total

bacteria on average by 57 % (p=0.043) and HPC on average by 94 %, in two waterworks ozone

did not decrease HPC (III, Table 2). In ozonated waters tere was a linear relationship between

MAP and HGR, there 1 µg/l of MAP corresponded to 109 CFU.

/,6,< �:��������:������=����������$���'

Ozonation is usually followed by activated carbon filtration (GAC), which removed 23 % of

TOC (p=0.028) and 85 % of AOCpotential concentrations in water (III, Table 2). Also the

concentration of total phosphorus decreased below the detection limit of 2 µg P/l, and MAP by

47 %. The microbial growth potential (p=0.080) decreased with decreasing contents of MAP

and AOCpotential. There were no changes in the total bacterial counts, but the concentration of

HPC increased  (III, Table 2).

/,6,0 �&>��?���9��������:������������$���'

In surfacewater works disinfection was generally combined with pH adjustment by lime

(Ca(OH)2). In most of the studied waterworks, disinfection was carried out with chloramine.

This finishing treatment increased slightly TOC and the growth potential of heterotrophic

bacteria (III, Table 2), AOCpotential increased by 26 % and total phosphorus concentration was

not changed. However, the concentration of MAP increased by 260 % (p=0.068) during the

combined disinfection and pH adjustment (III, Table 2). The concentration of HPC clearly

decreased (p=0.080) (III, Table 2).

The effect of  liming without disinfection could be analysed in two groundwater works, in one
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artificially recharging groundwater works and in one surfacewater works. Liming did not

change the concentrations of TOC or AOCpotential. In contrast, the average content of total

phosphorus increased from below the detection limit up to 4 µg/l, and the MAP doubled

(p=0.068) (III, Table 3). The increase in MAP was associated with an increase in the microbial

growth potential (III, Table 3). In one waterworks (A1) using limestone filtration, the content of

MAP decreased during the filtration.

/,6,/� ����=�:������:���8���=�8�����������$���'

Infiltration through soil effectively removed organic matter from the water. TOC decreased here

on average by 56 %, AOCpotential by 40 %, total phosphorus to below the detection limit and

MAP by 67 % (III, Table 3). Also, the concentrations of total bacteria and HPC decreased (III,

Table 3). Microbial growth potential with or without nutrient addition increased in slow sand

filtration. Bank filtration applied in one waterworks (A3) removed effectively organic matter

and bacteria but increased greatly the content of phosphorus in the water.

/,6,2, +!>�����=�:�����$�!'

UV254-irradiation did not change the content of TOC or total phosphorus (IV, Table 1). In

waterworks, and in the laboratory experiments, the disinfection efficiency was on average 89 %

(1 log inactivation) with these low doses (>/7��6�	��2). UV254-irradiation doses below 46

mWs/cm2 decreased  AOCpotential on average by 29 % (range 7-50 %, p=0.028) (IV, Table 1).

With higher UV254 doses, there was no further decrease in the AOCpotential (IV, Table 1). In five

cases, the sum of the molecular size fractions (SMSF) decreased in samples by 5-58 % during

the UV254-irradiation (IV, Table 1), in one sample the SMSF increased. There also were changes

in the molecular size distribution this being seen especially in samples A and B, where the

proportion of small fractions increased whereas the large fractions decreased (IV, Fig. 1).

In waterworks and in the laboratory experiments where the lowest UV254 doses (46 mWs/cm2)

were applied, there was only a minor effect on MAP (IV, Table 1). The UV254 dose of 204

mWs/cm2 in laboratory increased MAP on average by 55 % (range 8-82 %) (IV, Table 1). The

highest increase in the content of MAP took place in waters containing the highest amounts of

organic matter (E and F) (IV, Table 1). The effect of UV-disinfection on microbial growth
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(HGR) was not clear, with the lowest doses of UV254, microbial growth usually increased, in

contrast to the highest doses, which inhibited microbial growth (IV, Table 1).


�����6. Summary of the chemical and microbiological effects of the different water treatment
processes on water quality.

Coagulation Ozonation GAC Disinfection

+ liming

Infiltration

on soil

UV-

disinfection*

Liming

TOC

AOCpotential

Total

phosphorus

MAP

Total

bacteria

n.a.

HPC

HGR max

Symbols: decreased,  no changes,  increased,  AOCpotential, assimilable organic carbon analysed with addition
of nutrients; GAC, granular aactivated carbon filtration; MAP, microbially available phosphorus; n.a., not analysed;
HPC, heterotrophic plate counts; HGRmax, maximum microbial growth potential in water; TOC, total dissolved
organic carbon. * doses were < 46 mWs/cm2.
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All of the surfacewater works applied chemical coagulation, which effectively removed organic

matter and phosphorus. The average decrease in the TOC content during the complete

purification process was 59 %. In purified drinking waters, TOC was 2.5 mg/l on average (III,

Table 4). However, the AOCpotential increased in most of the surfacewater works by 134 % on

average. In drinking waters the AOCpotential  was 127 µg/l on average (III, Table 4). Total

phosphorus and MAP were effectively removed by the surfacewater works (III, Table 4). Even

though some parts of the process e.g. ozonation and liming increased MAP, during the complete

purification process the concentration of MAP decreased on average by more than 90 % (III,

Table 4). Artificial recharging of groundwater through soil effectively removed microbial
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nutrients and microbes. On average half of TOC and of AOCpotential in the raw water were

removed in artificially recharging groundwater works, furthermore, the total phosphorus

decreased below the detection limit, and MAP decreased by 73 % (III, Table 4).

Drinking waters produced in groundwater works had the highest concentrations of  total

phosphorus and MAP but lower contents of organic compounds than artificially recharged

groundwater and  water produced from surface water (III, Table 4). Also the microbial growth

potential was higher in groundwaters than in waters produced from ARG or surface waters (III,

Fig. 1). The content of MAP varied from 1 % to almost 100 % of the total phosphorus

concentration. The relative availability of the MAP was highest in ground waters and lowest in

drinking waters produced from surface waters.

In most of the drinking waters, microbial growth was limited by phosphorus availability (III,

Fig. 1). In drinking water samples with low MAP concentration (<10 µg/l), MAP correlated

strongly (r=0.90, n=14, p=0.000) with the heterotrophic growth potential (III, Fig. 2), there were

no correlation between total phosphorus or AOCpotential and heterotrophic growth potential.
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2�������� ��� &� �	�� !-4-P  increased the viable counts of heterotrophic bacteria in biofilms

(p=0.000) (V, Fig. 3). Further increase in the number of heterotrophic microbes with increasing

phosphorus concentrations was minor. The number of bacteria was on average 3-4 times higher
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phosphorus doubled the concentration of total bacteria in the biofilm (p=0.000) (V, Fig. 4). The

����
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����������
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total number of bacteria increased exponentially for up to 6 days, after which the growth was

linear. In the linear growth phase, the biofilms treated with phosphorus had growth rates of 22

000 bacteria/cm2/d (range 21 000-23 000) and the untreated biofilm produced 8 600

bacteria/cm2/d. The enhanced microbial growth by added PO4-P (1-5 µg/l) was also evident in

the increase in the ATP content of the biofilms (V, Fig. 5). The content of ATP increased with

increasing PO4
3- concentrations (p=0.000 for all treatments).
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Mean ATP concentrations per bacteria increased with increasing phosphorus additions. With 1,

������(� �	��!-4
3--P additions, ATP contents per cell (total numbers) were 2 x 10-17, 2 x 10-17, 5

x 10-17 and 6 x 10-17 g ATP/cell, respectively. If calculated with respect to the heterotrophic

����
� ������%� ��
�� ��
� �
��� 2�!� ����
���� ��� ��
� ����
��
�%� &%� �� ���� (� �	�� !-4
3--P treated

biofilms were 4 x 10-17, 3 x 10-17, 7 x 10-17 and 1 x 10-16 g ATP/CFU, respectively.
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There is a clear and obvious need to have a sensitive method for analysing MAP from drinking

water. In previous studies from Finland, it was found that microbial growth in most Finnish

drinking waters was limited by phosphorus and the content of total phosphorus is usually below

the detection limit of the standard methods (2� �	�
��1�
����
����
	�� 1997a).

A method to analyse assimilable organic carbon in drinking water was developed two decades

ago (Van der Kooij ��
 	�� 1982b). This method was based on the growth of known bacterial

strain (��
����
������) in a water sample and the cell numbers were converted to the assimilable

organic carbon concentration with yield factors obtained from the standardization (Van der

Kooij ��
	�� 1982b). The bioassay developed here for analysing MAP in drinking water operates

on a similar principle. Natural microbes in the water sample are first destroyed by pasteurization

and the growth of inoculated test bacteria is converted to the concentration of microbially

available phosphorus. The MAP bioassay is very sensitive, this being reflected in the high

correspondence of ��
 ����
������ growth on the low phosphorus concentrations. In the AOC

tests, growth yields for the ��
����
������ varied from 2.04 x 106 (Miettinen ��
	�� 1999) to 4.1 x

106�"#$	� ����
���
'"��)����
��3���4���
	�� 1982b; Standard Methods 1995), while in the MAP

bioassay, the growth yield for the same bacteria was 3.73 x 108� "#$	� �� !-4-P. The ratio

between these growth yields 183-91 is close to the ratio 100:1 for carbon and phosphorus

required for optimum bacterial growth as suggested by Van der Kooij (1982b). The growth

�
�����
��������
��������
�����
���������(����&�� �	��!-4-P, which is a reasonable range for use

���������������
��������������%�������������������
����������
��12!��
��������&�� �	���?%�???%

?)
��?��������������
�����������12!����
������&�� �	��������������������������������������������

limited by phosphorus, because drinking waters in Finland contain always AOC/AOCpotential less

�����(��� �	���???%�1�
����
����
	�� 1997b and 1999).

Chemical coagulation with alum showed toxicity against the test bacterium ��
����
������. Huck

(1990) found that polyaluminum chloride (PAC) can inhibit the growth of ��
����
������
P17.

According to our results, ferric and alum salts were more toxic than PAC against ��
����
������

P17. The toxicity appeared especially in the waters taken just after chemical coagulation (II).
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In future, it would be worth to develope MAP bioassay by adding more bacterial species, as

proposed by Juhna (2002), who found that the growth response of indigenous bacteria was

higher for phosphorus than the bacterial strain (��
 ����
������) used in the bioassay. We also

found that growth response of bacterial community was higher than that of ��
����
�������
The

yield factor for the mixed populations of microbes was 5.9 x 108 (data in sub-study III) – 1 x 109

"#$	 ��!-4-P (II), which is higher than the yield for ��
����
������ in the MAP bioassay (3.7 x

108 "#$	 ��!-4-P). The higher yield factor of mixed populations based on microbial numbers

does not strictly prove higher uptake of phosphorus by the mixed populations. If the cells of

microbes in the mixture are smaller than the cells of ��
����
�������, the biomass production and

associated phosphorus uptake in the mixture are lower than the cell numbers predict�

Presently the chemical characteristics of phosphorus pool available for microbes in drinking

water systems is not known. Various bacterial species probably differ in their capability to

uptake the various forms of phosphorus, and therefore a microbial consortium consisting of

several microbial species could more efficiently utilize phosphorus than a single species. Multi-

species system also would diminish the problem of toxicity of some chemical compounds in the

MAP analysis. A disadvantage of the multi-species system is the requirement to determinate the

yield factor (standardization) and growth separately for every microbial species, thus making the

test more laborious.

2,6� �==�:��� �=� ������ �����9���� ��:���C���� ��� ����������.� ��8���:� :������ ���

9�:�������8�����

The various water purification techniques differed in their effects on microbial nutrients and

microbial growth response. Chemical coagulation combined with rapid sand filtration was the

most efficient phase in the removal of organic carbon and phosphorus from surface water. The

removal percentage of organic carbon was higher for TOC, than for AOCpotential. These results

are in agreement with the previous studies showing good removal of phosphorus (Cooke ��
	��,

1993; Nishijima ��
	�� 1997) and AOC (Van der Kooij 1990; Charnock and Kjønnø�2000) with

aluminum and iron salts. Nissinen ��
	�� (2001) found that chemical coagulation was especially

good at removing high molecular size molecules, though lower size fractions were removed less

efficiently, which may explain the better removal of TOC than AOCpotential. There were

difficulties encountered in the analysis of MAP and AOCpotential in some samples as a result of
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the toxic effects of coagulants on the test strain. Some raw waters before coagulation had a

MAP concentration above the upper limit of the bioassay (dilution was needed).

These present results agree with others showing that ozonation increases strongly the content of

AOC (Van der Kooij ��
 	�� 1982b; Miettinen ��
 	�� 1998; Escobar and Randall 2001) and

decreases TOC (Kainulainen ��
 	�� 1995; Miettinen ��
 	�� 1998) as a result of degradation of

organic matter. One novel finding here was that ozone increases the content of MAP in water

(II, III). The origin of this MAP was considered to be the degrading organic matter. Martin (in

Stevenson, 1982) suggested that inorganic phosphate can form stable complexes with soil

organic matter and this phosphate is released after destruction of these complexes. Humus

contains small amounts (0.1 – 0.46 %) of phosphorus, especially in association with cations

such Fe2+, Al3+ and Ca2+ (Thurman 1986; Holtan ��
 	�� 1988; Hens and Merckx 2002). The

increase in content of MAP in ozonation is important because also the content of AOCpotential

increased strongly in ozonated water. The increase in AOCpotential and MAP was associated with

an increase in microbial growth in water (II). After ozonation, there was a good correlation

between MAP and microbial growth rate (II), but no correlation between AOCpotential and

microbial growth was not found.

Ozonation is followed usually by activated carbon filtration (GAC/BAC), to enhance the

removal of organic matter before distribution of drinking water. Here GAC effectively removed

the nutrients (AOCpotential and MAP) released in ozonation. According to previous studies, GAC

has removed AOC by between 50 to 80 % (Vahala ��
	�. 1998b; Hu ��
	�. 1999; Liu ��
	�� 2002).

We found over 90 % efficiency in some waterworks. However, the concentrations of HPC and

total bacteria increased during GAC as found previously (Servais ��
	�� 1991; Pietari 1995; Van

der Kooij ��
	�� 1989). The reason for this increase is the export of bacteria from biologically

activated carbon.

In combined chlorination and pH adjustment with lime, both the AOCpotential and the MAP

content increased and also the content of total phosphorus increased. The increase in MAP

content was caused by the addition of lime, as found in the waterworks where disinfection was

not used. The increase in nutrients was slightly affected the heterotrophic growth response,

which also increased after disinfection and liming (III, Table 2).
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In one water using limestone filtration, the MAP concentration decreased during the filtration,

as found once earlier (Sallanko and Lakso 2000)

The AOCpotential content in water increased by hypochlorite disinfection, as it did in chloramine

disinfection, as a result of organic matter degradation by chlorine. Similar results have been

reported in many previous studies (Van der Kooij 1990; Miettinen ��
	�� 1998; Charnock and

Kj�nn� 2000; Okabe ��
 	�� 2001). It was previously found that the AOCpotential concentration

increased linearly with the added hypochlorite dose up to 2 mg/l, but there was no increase in

the content of MAP with chlorination (Lehtola ��
	�� 2001).

UV254-radiation is known to degrade organic matter (Armstrong ��
	��, 1966; Corin ��
	�� 1996;

Kulovaara ��
 	�. 1996) and liberate phosphate (Armstrong ��
 	�� 1966; RonVaz ��
 	�� 1992;

Vähätalo and Salonen 1996). With the doses of UV254 used in drinking water disinfection, no

changes in TOC were found. However, there were changes in the AOCpotential and molecular size

distribution (IV, Table 1, Fig. 1). In molecular size fractions, the proportion of the small

fractions increased and the proportion of large fractions decreased (IV, Fig. 1), as found

previously with higher doses of UV254 (Backlund 1992). The reason for these changes could be

the alterations in the UV absorbing chromophores of organic matter or in the amounts of organic

matter. Degradation of large fractions to lower molecular size fraction can result in less UV

absorptivity in the analysis. Kulovaara ��
 	�. (1996) found that UV254-irradiation changed the

high molecular weight organic matter to a more aliphatic character and with the appearance of

more carboxyl and carbonyl atoms. Some of the microbially available organic compounds

would be degraded by UV254 or precipitated as iron complexes as shown by Kulovaara (1996)

and thus decrease the content of AOCpotential.

The release of MAP from organic matter required a higher dose (204 mWs/cm2) of UV254-

radiation than that normally used in drinking water disinfection. The increase was highest in

waters containing the highest amounts of organic matter. It has been reported that UV-radiation

effectively released phosphorus (microbially available orthophosphate) bound in the ester form

or via a C-P bond (Ron Vaz ��
	�. 1992).

Surprisingly, the effect UV-disinfection on the heterotrophic plate counts was lower than

expected (Harris ��
 	�. 1987; Wolfe 1990; Parrotta & Bekdash 1998). There were culturable
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bacteria in all waters when the water was treated with doses less than 204 mWs/cm2 (IV, Table

1), the disinfection efficiency in waterworks and in laboratory experiments with the doses of 46

mWs/cm2 was on average 89 %. We found that the highest UV254 doses inhibited microbial

growth in the HGR test. There are also some previous studies, showing prolonged inhibition

(lasting for days) in microbial growth in water after UV254-irradiation. The reason for that was

supposed to be in hydroxyl radicals and hydrogen peroxide (H2O2) produced by UV254-

irradiation from humic substances (Gjessing and Källqvist 1991; Lund and Hongve 1994).

Hydrogen peroxide has longer half life than hydroxyl radicals and may react with ferrous iron

and humic substances to produce hydroxyl radicals (Lund and Hongve 1994).

Infiltration into soil was effective in removing both nutrients and microbes from water, which is

in agreement with previous studies showing the good removal of bacteria and viruses (Farooq ��

	�. 1994; Peters ��
	�� 1998; Schijven ��
	�� 2000;), AOC (Van der Kooij 1990; Miettinen ��
	��

2001b) and MAP (Miettinen ��
	�� 2001b) in ground filtration.

Microbial growth potential increased in infiltration into soil, in contrary to the decrease in the

contents of microbial nutrients. The reason can be the changes in the microbial community

(Preuß and Nehrkorn 1996). Also the grazing of protozoa in untreated lake or river water can

retard the growth of bacteria populations (Hahn and Höfle 2001).

2,<�  ��=��9�

Formation of biofilms was studied with the PVC slides in a laboratory experiment. Our results

showed that the availability of phosphorus regulated not only the development rate of biofilms

but also microbial numbers during steady state. Recycling of phosphorus in biofilms with water

of low MAP content cannot maintain a maximal microbial growth as suggested by

LeChevalllier (1990).

The number of culturable bacteria in biofilms rapidly reached the steady state and their

����
��������� ����
��
�� ����� ����������� ��������� ��� &� �	�%� ���� ��
�
� ���� ����� �� �����

subsequent increase with further phosphorus addition. Total bacterial concentrations grew

continuously to the end of the experiment. Phosphorus was affecting also the growth rate, which

was higher in phosphorus treated biofilms if compared to untreated biofilms. During the
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maturation of the biofilm, the viability of bacteria deeper in the biofilm may decrease. In some

earlier studies it was found that the numbers of culturable bacteria in biofilms were 1-2 order of

magnitude lower than the microbial numbers assessed with direct microscopical counting

(Block ��
	�� 1993; Schwartz ��
	�� 1998). In our results, almost half of the total bacteria were

culturable, which may indicate that steady state in total bacteria had not been reached, but also

may reflect the optimal conditions for biofilm formation. It was also found that addition of

phosphorus enhanced the culturability of microbes in biofilm.

The content of ATP in biofilms increased with the increase in phosphorus concentration up to 5

�	�����
��
�������
������2�!	�
������"#$�����
��
�����������
���������������������
��������%

which is an indication of the limiting effect of phosphorus availability. In the previous literature,

it has been found that phosphorus limitation significantly decreased the cellular ATP pool of

������
�� �3���� &5 �
�� ��
� 2�!� ����
��� ��� ��������������
�� �
�
������ (� �	�� ����������� ��

water was close to that found earlier (10-16 – 10-15 g ATP/cell) for active bacterial cells (Webster

��
	�� 1985; Stanley 1989).

These results showed that in phosphorus limiting water also the formation of biofilms was

affected by the availability of phosphorus. Very low additions of phosphate in water increased

the microbial concentrations in biofilms. There are also some other studies agreeing with these

findings. Phosphorus enhanced bacterial growth in drinking water biofilms in a Japanese study,

where addition of phosphorus significantly increased the growth of heterotrophic bacteria in a

rotating biofilm membrane reactor (Okabe ��
	�� 2001). Critchley ��
	�. (2001) found in a copper

corrosion study that phosphate concentrations in drinking water correlated with total biomass in

biofilms. In a recent study from Latvia, Juhna (2002a) found that the formation of biofilms in

distribution networks was lowest with the lowest concentrations of MAP in humus rich drinking

water.

According to the recent results, phosphorus can influence also the microbial community

structure in biofilms, characterized by phospholipid fatty acids and lipopolysaccharide hydroxy

fatty acids (Keinänen ��
	�. 2002). The addition of phosphorus increased the proportion of gram-

negative bacteria in biofilms and also changed the community structure of gram-negative

bacteria (Keinänen ��
	�. 2002). However, the greatest difference in phospholipid fatty acids was

found between drinking waters and biofilms (Keinänen ��
	�. 2002).
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There are many areas where microbial growth in drinking water is known to be limited by

organic carbon (Van der Kooij ��
 	�� 1982b; LeChevallier 1990; Appenzeller ��
 	�� 2001;

Chandy and Angles 2001). There also the formation of biofilms was not increased by the

addition of phosphate to the water (Rompré ��
	�� 2000; Appenzeller ��
	�� 2001; Chandy and

Angles 2001). In highly corroded iron pipes, addition of notably higher concentration (1-5 mg/l)

of phosphate than we used in our experiments (eg. zinc orthophosphate and ortho-

polyphosphate) decreased microbial activity on the pipe surface and corrosion products in water

(Abernathy and Camper 1998; Rompré ��
 	�. 2000; Appenzeller ��
 	�� 2001 and 2002).

Phosphorus reacts with iron and iron corrosion products like FeOOH forming FeOOH-PO4

complexes and FePO4. Since FePO4 and bacteria both have negative charges, this will depress

the biofilm densities and also reduce the humic adsorption capacity (Abernathy and Camper

1998). Since phosphorus reacts with iron compounds (Cooke ��
	�� 1993; de Jonge ��
	�� 1993;

Abernathy and Camper 1998; Appenzeller ��
 	�. 2002), iron may also affect the content and

availability of phosphorus in drinking water distribution networks.

Our recent results suggest that phosphorus accumulates together with iron, organic matter

(AOC) and microbes in loose deposits of iron pipes, and a change in water flow then drives all

these components into the water phase (Lehtola ��
 	�. Submitted). A question is, would the

anaerobic conditions in biofilm induce microbial iron reduction (Fe III > Fe II) and associated

phosphate release from iron-phosphorus complexes, a mechanism known to occur in anaerobic

lake sediments (Cooke ��
	�. 1993; Gächter and Meyer 1993). In theory phosphorus would both


�����
� ���� ��������� ���������� ��� ����� ���
��� 0����� 
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limited water can increase biofilm formation on iron pipes and microbial induced corrosion.

However, it remains to be shown if the high phosphorus concentrations used in anticorrosion

treatment (mg) would reduce iron pipe corrosion even in phosphorus limited water distribution

systems by modifying the surface properties of iron corrosion products. This question is very

important at waterworks planning to apply phosphate based anticorrosion treatment.

2,0 
������������9���������������7��8������

Finnish lake waters contain a high concentration of organic matter (Kortelainen 1993).

According to our results, one important reason for the phosphorus limitation in Finnish drinking

waters is usually the more effective phosphorus removal than the removal of AOCpotential. In



55

many cases the AOCpotential content even increases during the drinking water purification

process, especially if the waterworks utilizes ozonation. Microbial growth in raw waters of the

studied surface waterworks was not always clearly limited by phosphorus (results not shown).

Carbon limitation of heterotrophic bacteria in aquatic systems has been an important paradigm

in microbial ecology, but phosphorus limitation has rarely even been considered (Vadstein

2000). In most studies in aquatic systems where phosphorus limitation has been tested, however,

phosphorus has been found to be a limiting factor for the growth of heterotrophic bacteria (Haas

��
 	�. 1988; Vadstein 2000). In river water, also the formation of biofilms increased with

increasing phosphorus concentrations (Mohamed ��
 	�� 1998). Therefore it is obvious that

especially in regions where phosphorus limits microbial growth in raw water, also after water

purification, phosphorus still may be the limiting factor for microbial growth. Efficient water

purification also can change the water so that it becomes phosphorus limiting, as found in the

present study (II, III).

After the first findings on phosphorus limitation in drinking waters (Miettinen ��
 	�� 1996b;

Sathasivan ��
	�� 1997) some other direct and indirect findings have been published concerning

phosphorus limitation in drinking water (Charnok and Kj�nn� 2000; Juhna and Nikolajeva

2000; Szewzyk ��
	�� 2000). Recently opposite results have also been published (Rompré ��
	��

2000; Appenzeller ��
	�� 2001; Chandy and Angles 2001; Frias ��
	�. 2001; Niquette ��
	�. 2001).

These results show that phosphorus vs. organic carbon limitation varies geographically and

should be tested in each individual waterworks. In waterworks, where microbial growth is

limited by organic carbon, small changes in phosphorus concentration had no effects on the

microbial quality of drinking water. The ratio of AOCpotential to MAP in phosphorus limited

waters varied in different types of drinking waters. In ground waterworks, the AOCpotential:MAP

ratio was on average 27:1 and in surface waterworks it was on average 633:1 (III, Table 4).

Because AOCpotential and MAP analyses are based on the growth of one or two bacterial strains,

there can be organic carbon or phosphorus available for microbes but not shown by the tests (see

above). This hampers the exact determination of the critical AOCpotential to MAP ratio where

either phosphorus or carbon limits the growth of bacterial community. Important is, that the C:P

ratio is completely different in drinking waters in Finland than  e.g. in USA, where the average

C:P (AOC:PO4-P) ratio was 0.4:1 and 2.3:1 and microbial growth in drinking waters is usually

limited by the carbon content (Zhang and DiGiano 2002). The required C:P ratio for optimum

microbial growth is 100:1 (Van der Kooij 1982; Zhang and DiGiano 2002). The C:P ratio in
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bacteria may vary, normally it is 20, but if the phosphorus supply is sufficient and redox

conditions are appropriate, the C:P ratio can decrease down to 5 (Gächter and Meyer 1993).

Also, the phosphorus content in bacteria depends on the specific growth rate of the bacteria

(Vadstein 2000).

In our study, the phosphorus limitation was tested with native bacteria communities, which vary

in different waters. Phosphorus requirements for the growth of heterotrophic bacteria can vary

(Vadstein 2000). It has been reported that phosphorus availability affect the bacterial

community structure in biofilms (Keinänen ��
 	�. 2002). Also, adding of phosphorus may

enhance the culturability of bacteria in drinking water. Block ��
 	�. (2002) presented that the

HPC values depended on environmental stress factors like e.g. nutrient starvation. In a recent

study with phosphorus limited water, addition of phosphorus enhanced the survival of coliform

bacteria (Pitkänen ��
	�. 2002). All these reasons may affect also the HPC numbers in HGR test

and thus the correlation of MAP and HGR. However, the MAP bioassay proved to be useful

analytical tool in studying phosphorus limited waters where MAP correlated with microbial

growth potential of the native bacteria in the drinking water. There were no correlation between

MAP and total phosphorus, indicating that in these waters total phosphorus was not a good

parameter in describing the usability of phosphorus for microbial growth.

If chlorine is used for the disinfection, the disinfectant residuals have a stronger influence on

bacterial regrowth, than temperature, AOC and water residence time (Zhang and DiGiano

2002). There are several large waterworks in Europe where the microbial growth in the

distribution system is controlled without chlorine disinfection (Van der Kooij ��
 	�. 1998;

Szewzyk ��
 	�. 2000; Uhl ��
 	�. 2001). Also the use of UV-disinfection is becoming an

increasingly common way to disinfect drinking water. Even without disinfectants bacterial

regrowth can be controlled by removing microbial nutrients so effectively that the water

becomes biologically stable, if there is a short residence time in distribution system and a low

initial bacterial concentration in the water as it leaves the waterworks (Van der Kooij 1990;

LeChevallier ��
	�. 1991; Van der Kooij ��
	�. 1998; Szewzyk ��
	�. 2000; Uhl ��
	�. 2001). Our

results show that also phosphorus has to be considered when the regrowth of bacteria and

hygienic quality of drinking water in distribution system is controlled by nutrients. There are

many areas in Finland, and probably in the world, where the content of phosphorus is so low

and the content of organic carbon so high, that microbial growth in drinking water is limited by
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phosphorus availability (Miettinen ��
	�. 1996b, 1997a; Sathasivan ��
 	�. 1997; Charnock and

Kj�nn� 2000; Juhna and Nikolajeva 2000; Szewzyk ��
	�. 2000).

The present drinking water purification techniques such as chemical coagulation and infiltration

in soil are effective in removing of MAP from drinking water. It may be difficult to a achieve a

further increase in their efficiency since there are economical and technical problems. Therefore,

it is probably more beneficial to develop or avoid the present water purification techniques

which increased the nutrient concentrations. One way is to develop pH adjustment techniques to

which would not necessitate the use of compounds causing phosphorus contamination. One

possible way could be limestone filtration, which seemed even decrease the MAP concentration

in one studied waterworks. This treatment is worth of studying in the future. The effects of

oxidative disinfection on the microbial nutrients, both MAP and AOC, have to be considered

critically.

In ground waterworks, the MAP concentrations and microbial growth potential were higher than

in surface waterworks, as a result of less treatments. In some ground waterworks it could be

necessary to utilize some treatment step for removing phosphorus from water to avoid high

microbial growth in drinking water, especially if there is not used chlorination.

The experiments in this thesis were performed in waterworks with real water samples. One

biofilm study was done in the laboratory scale. In the future, more research will be needed to

study the role of phosphorus in old biofilms present in a full scale distribution system or in a

pilot scale distribution system with different pipe materials. Also, the role of phosphorus on

survival and growth of pathogenic microbes in drinking water and biofilms should be studied.
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• In phosphorus limited drinking waters very low amounts of phosphorus affect microbial

growth. A new sensitive bioassay for microbially available phosphorus (MAP) permits

studies on the role of phosphorus in drinking water and the effects of water treatment

techniques on phosphorus availability. The bioassay detects that part of phosphorus, which
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• Chemical coagulation, activated carbon filtration and infiltration in soil effectively remove

microbial nutrients (MAP and AOCpotential) and reduce the microbial growth potential in the

water, while ozonation increases them. Liming increases MAP and disinfection with

chlorine increases AOCpotential. UV-disinfection does not increase the content of MAP, but

slightly decreases AOCpotential.

• The content of MAP and microbial growth potential is higher in drinking water produced

from natural ground water than in drinking waters produced from surface water due to the

more effective water purification of surface waters.

• In most Finnish drinking waters, microbial growth is limited by phosphorus. In these waters

MAP correlates with the growth potential of microbes in the water.

• ?������������������
��������������
�%����������������&'(� �	��!
�������������������
��
���


concentration of microbes present in biofilms.
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