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ABSTRACT

The activation of liver macrophages (Kupffer cells) by gut-derived endotoxin and
the release of pro-inflammatory mediators have been recognized as crucia events in
the development of alcoholic liver disease (ALD). Endotoxin in complex with its
carrier protein, lipopolysaccharide binding protein (LBP), is bound mainly to the
CD14 receptor on Kupffer cells. This process leads to cell activation and release of
potentially cytotoxic pro-inflammatory cytokines.

To study the mechanisms by which ethanol-induced liver injury develops beyond
steatosis, male rats for 6 weeks were given a modified ethanol liquid diet. In this diet,
the carbohydrate content was lowered from 11% to 5.5% of calories. This low-
carbohydrate ethanol diet resulted in consistently elevated diurnal blood ethanol levels
and aggravated liver lesions. Liver changes after six weeks consisted of panlobular
microvesicular and macrovesicular steatosis, occasional inflammatory foci, and a two-
to three-fold elevations of serum liver enzyme activities. In livers from rats on regular
11% carbohydrate ethanol diet, lesions beyond the periportally-located steatosis were
rare.

Considering the important role of CD14 endotoxin receptor and LBP in mediating
the LPS-induced pro-inflammatory signals and the putative role of endotoxins in
ALD, it was studied whether the known sensitivity to endotoxin hepatotoxicity in rats
with fatty liver is associated with increased expression of these proteins. After two
weeks of ethanol treatment, an increase in immunoreactive CD14 protein in isolated
Kupffer cells was observed. The increase was regulated pretrandationally: there was a
three-fold elevation in the hepatic level of CD14 mRNA. Hepatic mMRNA expression
of LBP was aso increased by chronic exposure to acohol.

To gain further understanding about the influence of gut-derived endotoxins on
alcohol-induced inflammatory responses and liver injury, ethanol-treated rats were
infused with endotoxin via osmotic minipumps for four weeks. Contrary to the acute
situation, the ethanol-induced liver damage was not significantly enhanced by the
chronic presence of endotoxin. This suggested that there was a development of
tolerance to endotoxin in spite of a sustained hepatic expression of pro-inflammatory
cytokines (TNF-o and IL-1B). The pro-inflammatory responses are possibly
counteracted by the anti-inflammatory cytokines (IL-4 and IL-10) and by a down-
regulation of CD14 and LBP.

Gadolinium chloride, which inactivates Kupffer cells, has been found to alleviate
experimental ALD. We investigated the mechanism of gadolinium chloride protection
after oral feeding of low-carbohydrate ethanol diet. Gadolinium was found to destroy
ED2-positive Kupffer cells, that were mainly located periportally, and to significantly
aleviate ethanol-induced steatosis. However, focal inflammation and the hepatic
CD14 expression, which was mainly perivenous, were unaffected. Gadolinium
significantly moderated the ethanol induction of CY P2E1, and this effect correlated to
the degree of steatosis.

In conclusion, oral administration of a low-carbohydrate liquid ethanol diet may
provide a useful model for studying early pathogenic mechanisms in acoholic liver
disease. The increase in hepatic CD14 and LBP expression suggests a new
mechanism by which alcohol increases the LPS-mediated cytokine signaling by the
liver macrophages, thus promoting the interaction between alcohol and endotoxins in
the development of liver damage. The development of endotoxin tolerance, however,
indicates that the chronic presence of endotoxin does not alone seem to be a primary



or a determinant pathogenic factor in ALD. Protection of ALD by gadolinium
chloride is through counteraction of steatosis, and perivenously-dominated Kupffer
cell populations expressing CD14 and releasing of pro-inflammatory cytokines are not
involved in this mechanism. GdCl; moderated the ethanol-induced CYP2E1l
induction, suggesting that protection by GdCl; could be, at least partly, due to less
CYP2EL. The correlation between pathology and CY P2E1 induction suggests a role
for this enzyme in the development of ethanol-induced steatosis.



INTRODUCTION

Alcohol abuse remains to be one of the main causes of morbidity and mortality
throughout the Western world. Not surprisingly, since the liver is the site for the bulk
of alcohol metabolism, most of its toxicological effects are seen in the liver. Liver
disease resulting from alcohol abuse caused approximately 350 deaths among men
aged 30 to 64 in Finland 1997 (Tilastokeskus, 2000). According to autopsie studies,
the number of people having cirrhosis at death may be considerably higher
(Savolainen et al. 1992). Although the pathogenesis of alcoholic liver disease (ALD)
has been increasingly delineated in a number of studies, still relatively little is known
about the actual mechanisms for the development and aggravation of ALD. From data
obtained from autopsies in numerous epidemiological studies, it appears that between
10 % to 20 % of chronic alcoholics have cirrhosis at the time of death. The relation
between the degree of alcohol consumption and risk of developing ALD is complex.
There is some evidence for athreshold level of alcohol consumption above which the
risk of ALD increases rapidly (Pequignot et al., 1978; Sgrensen et al., 1984).

Since there is a considerable variance in individual susceptibility to the
development of liver injury, other factors than alcohol abuse per se must clearly be
involved in the liver’'s susceptibility to alcohol. Alcohol-induced fatty liver is thought
to progress gradually to hepatitis and cirrhosis. While fatty liver is considered to be a
rapid and direct result of alcohol ingestion, the evidence showing that inflammation
and liver cell death can develop as aresult of acohol toxicity aloneisless convincing.
Numerous efforts have been directed at identifying co-existent factors interacting with
alcohol, such as immunological, genetic, hormonal, or nutritional conditions, which
may be involved in the progression of ALD beyond steatosis.

In recent years, it has become increasingly evident that bacteria in the intestines
play a key role in the initiation of ALD. Endotoxin (lipopolysaccharide, LPS) forms
an integral part of the cell wall of Gram-negative bacteria. Plasma endotoxin levels
are frequently elevated in chronic alcoholics and also in experimental animals
chronically receiving alcohol. The mucosa barrier is normally quite impermeable to
bacterial products, but supposedly alcohol consumption increases the passage of an
endotoxin through the intestinal wall into the portal blood. Upon reaching the liver,
endotoxin binds to its carrier protein, LBP (lipopolysaccharide binding protein), and
activates liver macrophages (Kupffer cells) through a CD14 protein on the cell
membrane. This results in a loca synthesis and release of pro-inflammatory
cytokines, such as tumor necrosis factor-o. (TNF-a) and interleukin-1 (IL-1), and
various other potentially cytotoxic products. The observation that experimental
alcoholic liver injury is aleviated by oral treatment with lactobacillus or antibiotics,
both of which reduce Gram-negative bacteria, supports the notion that endotoxins are
involved in the pathogenesis of the disease. The facts that alcohol consumption
increases cytokine levels in the liver and in blood, and that the symptoms cytokines
produce in humans are similar to those seen in alcoholic hepatitis, further support the
idea that endotoxin and cytokines are involved in the etiology of alcoholic liver
disease.

Attempts to reproduce human ALD in animals for the study of the pathogenic
mechanisms have been mainly unsuccessful. There is no anima model that is
economical and practical, and that creates most of the central features seen in human
ALD. In rats ethanol liquid diet administration orally does not produce liver lesions
beyond steatosis and blood ethanol levels are low to moderate. High blood ethanol
levels, seemingly a prerequisite for more severe lesions, can be obtained by infusing



ethanol via an intragastric cannula. In this way, other histopathological lesions, such
as inflammation and necrosis, are achieved. However, this modd is characterized by
several side effects and complications, and is expensive to use.

The present work was designed to clarify some of the mechanisms that are
involved in the progression of ALD beyond steatosis, with particular emphasis on the
regulation and induction of the Kupffer cell inflammatory responses. To study these
mechanisms, two rat models were developed: a low-carbohydrate ethanol liquid diet
model and amodel of chronic endotoxemia.



REVIEW OF THE LITERATURE

1 Pathology of ethanol-induced liver injury in man and animals

The histopathological features of alcohoalic liver disease (ALD) are very diverse:
virtually all forms of liver pathology may be encountered with patients with a history
of chronic ethanol intake. The spectrum of human ALD includes fatty liver, hepatitis,
fibrosis, and liver cirrhosis. Chronic ethanol administration to rodents has been
demonstrated to lead to a number of hepatic changes including steatosis,
hepatocellular necrosis, inflammatory cell infiltration, terminal hepatic venular
sclerosis, proliferation of the smooth endoplasmic reticulum, and mitochondria
aberrations (Iseri et al., 1966; Lieber and DeCarli, 1976; Tsukamoto et al., 1985). All
these changes also occur in the early phase of human acoholic liver disease,
demonstrating the relevance of the experimental models (MacSween and Burt, 1986;
Hall, 1995). On the other hand, several other changes, such as alcoholic hepatitis,
Mallory bodies, and advanced liver cirrhosis, are rarely seen in anima models,
usually only in the presence of additional toxic factors or in combination with some
type of nutritional deficiency.

1.1 Structural and functional organization of the liver

The structural and functional organization of the liver has been described by
hepatic lobule and hepatic acinus models, respectively. The hepatic lobule is defined
histologically as a hexagonal region of parenchyma which surrounds the central vein
at its center. The hepatic lobules are composed of one-cell thick parenchymal cell
plates, arranged radically around the central vein, thus forming sinusoidal blood
spaces. According to the lobular concept, the blood flows from the periphery of the
lobule, i.e., from the portal vein and hepatic artery, through sinusoids, and into the
central veins.

Rappaport defined the hepatic acinus as the smallest structural and functional unit
in the liver, a term based on the microcirculation in the liver. The simple hepatic
acinus is defined as a parenchymal mass organized around the porta triad (Fig. 1),
with the portal triad consisting of bile ductules, branches of the portal vein, and
branches of the hepatic artery. Within the acinus, blood drains from the portal triad
through the sinusoids into the central hepatic vein. The cells of the acinus are
arbitrarily divided into three zones: the periportal zone, the intermediate zone, and the
perivenular zone. The blood supply is mainly from the portal tract vessels. 80% from
branches of the portal vein and 20% of the hepatic artery.

Five intrinsic cell types have been identified in the liver: the parenchymal cells or
hepatocytes and four types of non-parenchymal cells. The non-parenchymal cells are
the liver resident macrophages, the Kupffer cells, endothelial cells; the Stellate cells
(also called Ito- or fat storing cells); and the pit cells or large granular lymphocytes. In
the rat, hepatocytes represent for about 60% of the total cell number and 80% of
hepatic tissue volume. Non-parenchymal cells in the rat are estimated to constitute
about 30% of total cellular population but comprise only 6-7 % of tissue volume due
to their small size relative to hepatocytes (Jones, 1996).
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Figure 1. The hepatic acinusis the functional unit of the liver.
Blood drains from the final branches of the terminal portal venule (TPV) and hepatic
arteriole (HA) in zone 1, to the terminal hepatic venule (THV) in zone 3.

1.1.1 Zonation of liver injury

Many of the histological abnormalities found in ALD are more prevaent in the
perivenular region of the liver lobulus. Several theories have been proposed to
identify the mechanisms responsible for this zonal nature of liver damage. The
perivenular region is located furthest from the periportal area, which is the entry site
for oxygen-rich blood. Accordingly, since the oxygen concentration is often lower in
the tissue’'s downstream region, perivenous cells in the liver are potentially more
susceptible to ischemic necrosis. It is suggested that after alcohol consumption,
hypoxic conditions sufficient to damage hepatocytes may develop in this area. The
oxygen requirement is increased during alcohol metabolism. In addition, this may be
combined with its decreased availability (Mezey, 1984; Tsukamoto and Xi, 1989).
Indeed, centrilobular necrosis caused by ethanol feeding can be prevented by
propylthiouracil, a compound that decreases liver oxygen consumption (Israel et al.,
1975; Orrego et al., 1987).

Another factor suggested to contribute to the zonation of ALD is that expression of
CY P2E1, which produces oxy-radicals that may contribute to the injury, is highest in
the perivenular region (Kato et al., 1990). Furthermore, hepatocytes in the perivenous
area contain less antioxidant factors, such as glutathione, and antioxidant enzymes,
such as glutathione peroxidase (Kera et al., 1987). Thus, while the lipid peroxidation
mediated by oxy-radicalsislikely to be highest in the perivenous area, the detoxifying
capacity of hepatocytes here is reduced; therefore, the production may exceed the
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detoxification specifically in the perivenular area. This also might be of importance
with respect to liver toxicity induced by a variety of xenobiotics. In addition to
ethanol, chemicals that cause liver injury specificaly in the perivenous zone in
hepatic lobule typically have to be preactivated by cytochrome P450 enzymes in order
to cause injury (Lieber, 1997).

Some functional and morphologic heterogeneity has been described in the location
of Kupffer cells in the liver acinus. The number of Kupffer cells is highest in the
periportal regions. In addition, the ones here are larger, contain more lysosomes, and
are more active in phagocytosis than those found in the perivenous region of the liver
acinus. The smaller Kupffer cells in the perivenous area are more active in cytokine
production and cytotoxicity (Bouwens et al., 1986; Fang et al., 1998).

1.2 Fatty liver

The most common histological change in acoholic liver disease is steatosis, a
rapid and predictable metabolic response to excessive alcohol consumption. It occurs
very commonly in alcoholics: the reported incidence ranges from 10% to 90%. Even
in the normal population, the hepatic steatosis has a high prevalence, between 6% to
24%, in most autopsy series (Hilden et al., 1977; Underwood Ground, 1984). Fatty
liver is thought to be a result of metabolic disturbances, such as decreased fatty acid
oxidation, increased triglyceride synthesis, reduced fat export, and mobilization of
extrahepatic fat stores (Lieber, 1993). Fatty infiltration is usually macrovacuolar, with
one large fat droplet per hepatocyte and lateral displacement of the nucleus (Ishak et
al., 1991). The term “acoholic foamy degeneration”, describing microvesicular
steatosis, was introduced in 1983 by Uchida et a. The hepatocytes are filled with
many small fat droplets (less than 1um) surrounding centrally placed nuclel
(Fromenty and Pessayre, 1995).

It was long considered that steatosis was a rather benign condition, due to its
common occurrence and rapid disappearance upon ethanol withdrawal. Even in the
most severe degree of fatty livers, the fat disappeared after 3 to 4 weeks of abstinence
(Lieber and Rubin, 1968; Desmet, 1985; MacSween and Burt, 1986). In addition, the
metabolic abnormalities in fatty liver were suggested to be insufficient to lead to
inflammation (Lieber, 1994). However, later studies have indicated that the cellular
changes taking place during the fatty metamorphosis may sensitize the cells to further
injury. Thus, it is now suggested that the more fat in the liver, the higher the
susceptibility to more severe damage (Day and James, 1998). In fact, both
experimental and clinical data suggest an association between the severity of fatty
accumulation and the development of damage (Sarensen et al., 1984; Nanji et al.,
1989). For instance, the hepatic triglyceride concentrations are higher in baboons
eventually developing cirrhosis than in those which only develop fatty liver (Lieber et
al., 1975). In acoholics, the severity of steatosis and the degree of the
necroinflammation and fibrosis are positively correlated (Bacon et al., 1994; Reeves,
1996; Day and James 1998). However, the harmful effects of lipid excess in the liver
are manifested only if additional stressful events occur. The fatty liver is highly
vulnerable to oxidative stress or the injury mediated by endotoxin or cytokine action
(Bhagwandeen et al., 1987; Yang et al., 1997; Colell et al., 1998). Furthermore, the
sensitivity to anoxic injury isincreased in alcoholic fatty liver (Caraceni et al., 1997).

The presence of microvesicular steatosis is especially indicative of a severe
condition. The mechanisms producing microvesicular steatosis have not been
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completely elucidated, but severe impairment of fatty acid beta-oxidation in
mitochondria is apparent (Fromenty and Pessayre, 1995). Microvesicular steatosis is
also seen in a number of other conditions involving mitochondrial aberrations. These
include drug toxicity (i.e. high-dose tetracycline and valproate) and Reye's syndrome.
Microvesicular steatosis is frequently associated with macrovesicular steatosis, giant
mitochondria, and perivenular fibrosis.

In humans, fatty liver is first seen in the perivenous area of the liver lobule
(MacSween and Burt, 1986), but thisis not consistently seen in animals. In rats either
perivenous, periportal, or panlobular fat accumulation is observed, depending upon
dietary factors and also upon gender (Thurman et al., 1998). Experimental studies
have clearly shown that the amount and type of dietary fat affects the development of
fatty liver. Thus the degree of steatosis increases along with the long-chain fatty acid
content of the diet and the degree of steatosis is decreased by medium-chain
triglycerides (Lieber et al., 1967). The composition of the dietary fat is reflected in the
composition of the lipids accumulating in the liver of ethanol-fed animals (Lieber and
DeCarli, 1970). Aggravation of alcohol-induced fatty liver is also seen if the diet is
low in protein or carbohydrates (Nanji et al., 1989; Sankaran et al, 1991).

1.3 Inflammation

About 10-30% of alcoholics develop acute alcoholic hepatitis, the frequency of
which has been suggested to be even lower than that of alcoholic cirrhosis (Hislop et
al., 1983; Savolainen et al., 1993). Alcoholic hepatitis, also called sclerosing hyaline
necrosis, is a highly characteristic histological condition. The morphological pattern
in man consists of the infiltration of polymorphonuclear leukocytes, hepatocyte
degeneration, and necrosis. The appearance of Mallory bodies is common, but it is not
considered to be an obligatory diagnostic sign (MacSween and Burt, 1986; Hall,
1995). In biopsy steatosis is amost always present with hepatitis, or, if the biopsy is
delayed, the mobilization of fat may have taken place (MacSween and Burt, 1986).
Alcoholic hepatitisin most cases is areversible condition, and is not always clinically
symptomatic (French and Burbige, 1979).

Hepatitis is considered to be the most important precursor to cirrhosis, the
progression of disease appearing to require one or more antecedent episodes of
steatohepatitis (Diehl, 1999). The presence of alcoholic hepatitis in the initial biopsy
may be of prognostic significance in the progression to cirrhosis; it is estimated that
about 50% of patients with hepatitis develop cirrhosis within 10 years (Sgrensen et
al., 1984). However, it is suggested that in some populations, particularly in Japan,
fibrosis and cirrhosis may develop without preceding hepatitis (Takada et al., 1982;
1993).

The ethanol-induced inflammatory lesions seen in rodents are somewhat different.
In rats the corresponding lesion is best described as an inflammatory cell infiltration
rather than as hepatitis. In many studies no more than 1-2 mononuclear inflammatory
foci per liver lobulus are seen in rats treated chronically with ethanol, and this
occasionally is present even in the livers of controls (Nanji et al., 1989b).

There is no direct evidence that ethanol per se causes inflammation. The presence
of fat in the liver seems to be a prerequisite to the development of inflammation,
possibly because a fatty liver is more vulnerable to various factors that trigger
inflammation (Day and James, 1998). For instance, there is evidence for an
involvement of bacterial endotoxins and viral hepatitis (Sata et al., 1996; Thurman et
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al., 1998). Furthermore, oxidative stress induced either by dietary polyunsaturated
fatty acids or by iron supplementation may aggravate the inflammation (Nanji et al.,
1994; Tsukamoto et al., 1995). A more pronounced inflammatory response is seen in
livers from female rats than males, suggesting an immunomodulatory effect of
estrogen (Thurman et al., 1998; Yin et al., 2000). Moreover, studies with rodents
suggest that binge-type alcohol treatment enhances the inflammatory response in the
liver (Enomoto et al., 1998; Bautista and Spitzer, 1999).

1.4 Fibrosis and cirrhosis

Perivenular fibrosis is considered as the first irreversible step in ALD progressing
into severe fibrotic changes and eventually to cirrhosis (Worner and Lieber, 1985;
MacSween and Burt, 1986). The fibrotic process is characterized by a proliferation of
stellate cells (HSCs) and their transformation into myofibroblasts. Hepatic
myofibroblasts are the source of both the overproduction of structural proteins that
constitute liver fibrosis and of the matrix metalloproteinases which contribute to the
remodeling of the hepatic parenchyma (Friedman, 1999). The pathogenesis of
alcohol-associated fibrosis remains speculative. Although conclusive evidence is still
lacking, Kupffer cell-derived inflammatory cytokines, such as TNF-o and TGF-,
have been implicated as the major cause for liver fibrogenesis (Britton and Bacon,
1999; Friedman, 1999). In addition, oxygen-derived free radicals, ethanol itself, and
its metabolite acetaldehyde have been invoked in the stimulation of collagen synthesis
(Lieber, 1991; Niemel& et al., 1995).

Fibrotic changes seldom appear in rats fed with ethanol and a normal diet, but they
can be provoked with dietary manipulations. A high-fat ethanol diet marginal in
choline, proteins, and vitamins has been reported to cause centrilobular fibrosis within
a period of few months (French et al., 1988; French et al., 1988b). This was also
achieved by oversupplementation of ethanol liquid diet with vitamin A (Leo and
Lieber, 1983) and in studies with baboons and miniature pigs (Porto et al., 1989;
Lieber et al., 1990; Niemel&, 1999)

Cirrhosis, the most severe form of alcoholic liver injury, develops only in 15-25%
of alcoholics even after 10-20 years of heavy drinking (Savolainen et al., 1993;
Becker et al., 1996). The most common pattern of human ALD is micronodular
cirrhosis, a condition characterized by fibrosis and the conversion of the normal liver
architecture into uniform-sized regenerating small nodules (Anthony et al., 1978;
MacSween and Burt, 1986). Microscopically, the normal liver architecture is distorted
by scar tissue which forms bands of connective tissue joining the periporta and
perivenous areas. It is generally accepted that eventually micronodular cirrhosis will
convert into cirrhosis of the macronodular type. The progression may continue even
after cessation of acohol intake (Gluud et al., 1987).

The production of such severe morphological changes by ethanol exposure alone in
animal models has proven difficult. In rodents cirrhosis only develops if ethanol is
combined with a nutritionally deficient diet, by dietary supplementation with
carbonyl-iron, or by inclusion of another hepatotoxin such as carbon tetrachloride
(Hall et al., 1991; Bosma et al., 1994; Tsukamoto et al., 1995). In baboon
experiments lasting 1-8 years, 20% of animals developed cirrhosis (Lieber et al.,
1975; Popper and Lieber, 1980; Lieber et al., 1990). It is of interest that this
resembles the unpredictable precipitation of cirrhosisin humans.
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2 Pathogenesis

2.1 Ethanol metabolism

Ethanol is removed from the body mainly by metabolism in the liver.
Approximately 90% of the alcohol is metabolized in the liver, while the
gastrointestinal tract, lungs, and kidneys play only a minor role (Lieber, 1994). Recent
studies have also emphasized the role of bacteria in the colon that are capable of
ethanol metabolism (Salaspuro, 1996). In the liver, there are three metabolic pathways
involved in the clearance of ethanol. The maor pathway, cytosolic acohol
dehydrogenase (ADH), catalyses reversible oxidation of ethanol to acetaldehyde. In
normal conditions, it accounts for about 80-90% of ethanol oxidation. The pathway
through cytochrome P450-2E1 (CYP2E1) is normally of minor quantitative
importance but under situations of sustained exposure to ethanol it can be induced
several-fold. The role of peroxisomal ethanol metabolism mediated by catalase is less
important under physiologic conditions in humans. Ethanol oxidation may produce
pathogenetic effects in several ways as a results of an altered redox state, toxic
products made by the induced CYP2E1l, and the direct cellular toxicity of
acetaldehyde.

2.1.1 Alcohol dehydrogenase

The primary enzymes for ethanol oxidation are the cytosolic acohol
dehydrogenases (ADHSs). The most important isoenzyme, class | ADH (ADH3), has a
particularly high affinity for ethanol with a K, of approximately 0.1 to 1.0 mM. The
major consequence of alcohol dehydrogenase-mediated metabolism of ethanol in the
liver is the generation of excessive reducing equivaents, primarily as NADH
(Forsander, 1970). The increased NADH/NAD+ ratio interfers with the capability of
hepatocytes to maintain homeostasis, resulting in a number of metabolic disorders,
including hepatic steatosis. This “redox shift” aso predisposes the hepatocytes to
hypoxic damage (Thurman et al., 1984), and favors events leading to oxidative stress
and lipid peroxidation (Kukielka et al., 1994).

2.1.2 Cytochrome P450-2E1

The second system for ethanol oxidation is NADP-dependent cytochrome P-450
located mostly in the endoplasmic reticulum. The CYP2E1 isoenzyme has been well
documented as the ethanol-inducible cytochrome form. However, this enzyme has a
very wide substrate specificity. In addition to ethanol, it metabolizes ketones,
aldehydes, aromatic compounds, nitroamines, and some carcinogens. Many substrates
of CYP2EL1 induce their own metabolism. Consequently, due to its inducibility
ethanol metabolism by this enzyme becomes more important during long-term use of
alcohol. The molecular bases for the induction of CYP2E1l are controversial.
Generally, ethanol and other agents acting on CYP2EL have little effect on the
contents of CYP2EL transcripts in the liver except at extremely high blood ethanol
concentrations (above 300 mg/dl) when an additional transcriptional step may be
involved (Badger et al., 1993). Post-trandational regulation is the major mechanism
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for CYP2EL induction. A generally recognized mechanism is the decreased enzyme
degradation stemming from substrate stabilization (Eliasson et al., 1988; Chien et al.,
1997). In addition to ethanol and other inducing agents, conditions including diabetes,
high-fat diet, and production of ketone bodies have correlated with increased
expression of CYP2E1L, but it has been suggested that the associated hormones, such
as insulin, more likely mediate the regulation of CYP2EL in these cases (Yun et al.,
1992; Zangar and Novak, 1997)

Data from several studies indicate a pathogenic role for the induced CYP2E1
enzyme (Ingelman-Sundberg et al., 1994). Due to the particularly high NADPH
oxidase activity possessed by this enzyme, reactive oxygen species (hydroxyl and
hydroxyethyl radicals) are generated during ethanol metabolism. These may initiate
membrane lipid peroxidation and cytokine release. Indeed, hydroxyethyl radical
production in vitro correlates with the degree of lipid peroxidation and liver damage
in experimental ALD (Albano et al., 1996). Consistently, two CYPZ2EL inhibitors,
dialylsulfate and phenethyl isothiocyanate, inhibit the progression of experimental
ALD. CYP2EL expression in the liver correlates with the ethanol-induced pathology
and lipid peroxidation (Morimoto et al., 1995). CYP2E1 is amost exclusively
expressed and induced in the area around the central vein, a localization that
correlates with the predominant site of tissue damage in ALD. In acoholics,
autoantibodies are formed against CYP2E1, suggesting that this enzyme potentially
acts as an autoantigen (Lytton et al., 1999). Induced expression of CYP2EL in
alcoholics provides an explanation for the increased susceptibility of these subjects to
the hepatotoxic effects of paracetamol, vitamin A, anesthetics, chemical carcinogens,
and industrial solvents.

In opposition to this evidence, a recent mouse study argued against the pathogenic
significance of CYP2E1l in acohol-induced liver disease. Similar pathological
changes in the liver were observed in ethanol-treated CYP2E1 knock-out and wild-
type mice (Kono et al., 1999). The power of this finding is, however, weakened first
by the fact that hepatic expression of CYP2EL is relatively low in these mice and
second by the rather mild pathological changes observed.

2.1.3 Generation of acetaldehyde

All routes for ethanol oxidation result in the formation of acetaldehyde.
Acetaldehyde is further oxidized to acetate, primarily by a low K. adehyde
dehydrogenase (ALDH2) localized in the mitochondria. Although ALDH2 is very
effective in keeping the acetaldehyde levels low, acetaldehyde generated during
alcohol metabolism is widely accepted as an agent toxic to hepatocytes (Maddrey,
1995). Many in vitro studies have shown that acetaldehyde is potentially a highly
reactive substance that has direct cytotoxicity and genotoxicity, and an ability to form
protein adducts with several target proteins and macromolecules (Sorrell and Tuma,
1987; Lieber, 1993; Singh and Khan, 1995). The functional consequences of
acetaldehyde-modified proteins are suggested to include mitochondrial aberrations,
enzyme inactivation, depletion of hepatic antioxidant factors, and the appearance of
antibodies against the adducts (Lieber, 1994; Niemeld, 1999). However, the
pathogenic relevance of acetaldehyde per se was recently questioned in an in vivo
experimental study. When the effects of acetaldehyde were maximized by giving two
different ALDH inhibitors, disulfiram or benzocoprine together with an ethanol liquid

16



diet, alcoholic liver injury was not aggravated but rather diminished (Jokelainen et al.,
1998).

2.2 Nutritional aspects

The importance of nutritional factors in the toxicity of alcohol has been a
controversial issue for many years (Bunout et al., 1983; Lieber, 1984; Rao and
Larkin, 1997). Earlier it was though that cirrhosis was primarily a nutritional disorder
(Best et al., 1949). Although numerous studies have now shown the development of
acoholic liver damage with a nutritionally adequate diet, it is obvious that the alcohol
effects in some cases are due to nutritional consequences. It is hard to define whether
malnutrition plays a pathogenic rolein ALD or whether it is secondary or coincidental
to ALD. Manutrition or mild nutritional deficiency is certainly common among
alcoholics, since they obtain close to 50 % of their energy intake as ethanol calories
that displace other nutrients; their diet often is poor, especially among lower-income
and homeless alcoholics; and their intestinal uptake of vitamins and minerals often is
compromised (Nazer and Wright, 1983; Salaspuro, 1993).

A main issue of controversy in the experimental field has been the reduced intake
of the liquid diet after the addition of ethanol. To avoid the nutritional differences,
which complicate the interpretation of hepatic changes, isocaloric pair-feeding is
used. Nevertheless, despite strict isocaloric protocols and regardless of whether
ethanol diet was voluntarily consumed (Lieber-DeCarli -model) or force-administered
intragastrically (Tsukamoto-French -model), ethanol-fed animals often tend to gain
weight less than controls (Morimoto et al., 1994; Korourian et al., 1999).
Interestingly, a similar effect has been demonstrated in a human ward experiment
(Pirolaand Lieber, 1972). Various explanations in addition to malnutrition have been
put forward for this phenomenon, including changed growth regulation and energy
wastage (Pirolaand Lieber, 1976; Rao et al., 1997).

Diets fed to experimental animals are usually based upon the recommendations of
the American Institute of Nutrition (AIN, 1977; Reeves, 1997). Since minimal daily
requirements for nutrients for rodents consuming alcohol may exceed those for
normal animals, oversupply of certain essential nutrients might be indicated. At least
the Lieber-DeCarli diet formula seems to be in itself nutritionally adequate, since
ethanol-related hepatic changes are not affected by an overall reduction in liquid diet
intake (Lieber and DeCarli, 1989), nor by supplementing this diet with extra proteins,
essential minerals, and vitamins (Rogers et al., 1981; Lieber and DeCarli, 1989).
Possible interactions between the diets and alcohol should, however, never be
overlooked.

In contrast to malnutrition, an excess of calories leading to obesity of the animals
may also be a problem. The incidence of steatosis and steatohepatitis correlates with
the degree of obesity (Sheth et al., 1997) and genetically obese mice are also sensitive
to endotoxin-induced liver injury (Yang et al., 1997).

2.2.1 Carbohydrates

In pair-feeding studies, control animals are usually given an isocaloric amount of
carbohydrates to replace ethanol. This protocol was first developed by Lieber et al.
(1963). Thus ethanol-fed animals receive much less carbohydrates. In terms of the
deposition of triacylglyceridesin the liver, the carbohydrate content rather than the fat
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content seems to be critical. Increasing the dietary carbohydrate content prevents
steatosis, and also some other damage (Tsukada et al., 1998; Y onekura et al., 1993).
For example, if the carbohydrate content of intragastrically-fed ethanol diet islowered
from 21 to 2.5%, inflammatory changes and elevated transaminase levels are
observed (Korourian et al., 1999). One mechanism by which carbohydrates have been
suggested to prevent steatosis is accelerating the rate of ethanol elimination (Rao et
al., 1987). It must be pointed out, however, that feeding a carbohydrate restricted
control diet as such has no effect on liver morphology or fat content (Lieber et al.,
1965).

2.2.2 Protein

Casein isthe usual source of proteinin liquid diets. It is reasonable low in cost and
the amino acid composition is adequate except for sulfur amino acids. Therefore, it is
necessary to supplement casein-based diets with cystine/cysteine or methionine. A
full range of different protein contents have been used in ethanol-containing liquid
diets, from a protein deficient diet (4% of calories), to an excess of proteins (25%)
(Lieber and DeCarli, 1982). A protein content of 13% is considered to be nutritionally
adequate for adult rats, while rapidly growing rats require 17-20% (AIN, 1977;
McDonad, 1997; Reeves, 1997).

2.2.3 Fats

A high fat content in the diet and the fatty acid composition influence the
development and degree of hepatic injury induced by ethanol. Thus increasing the
amount of fat leads to more severe changes, including abnormalities of mitochondrial
function and enhanced microsomal ethanol oxidizing capacity (Lieber and DeCarli,
1970; Wahid et al., 1980). Consequently, the diet protocols used in experimental ALD
models include a high amount of calories as fat. Actualy, this high fat diet resembles
that consumed by alcoholicsin the US (Mitchell and Herlong, 1986).

Severa experimental ALD studies have demonstrated that the type of fat is also
essential. The proportion of unsaturated fat correlates with the damage. Thus a diet
low in corn oil produced less damage than a diet high in corn oil, and virtually no
damage was seen if corresponding amounts of saturated fats (tallow oil or lard) were
given (Nanji et al., 1989b). Even more extensive damage, particularly inflammation
and necrosis, was seen when giving fish oil that is unusually rich in polyunsaturated
fatty acids (Nanji et al., 1994). Furthermore, experimental alcoholic liver injury was
shown to be reversed by adiet rich in saturated fatty acids (Nanji et al., 1995). These
data suggests that the combined presence of ethanol and unsaturated fatty acids
provokes damage via a high rate of lipid peroxidation.

Dietary fats also modify the ethanol induction of CYP2EL, which is induced by
polyunsaturated fatty acids (Yoo et al., 1991). The combined exposure of ethanol and
unsaturated fatty acids leads to an unusualy high induction of the ethanol-
metabolizing CY P2E1 enzyme, supporting the notion of a pathogenic role of CYP2E1
in ALD (Takahashi et al., 1992; Morimoto et al., 1993). Dietary fatty acids have also
been shown to modulate macrophage function. Saturated fatty acids suppress
phagocytosis (Morrow et al., 1985), and eicosapentaenoic acid suppresses
inflammatory cytokine production (Billiar et al., 1988). Medium-chain triglycerides
(saturated fat) also attenuate al cohol-induced inflammatory reactions and liver injury,
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possibly by atering CD14-regulated signaling pathway in Kupffer cells (Nanji et al.,
1997; Kono et al., 2000).

2.2.4 Micronutrients

Severa changes have made over several years in the composition of the ethanol
liquid diet with respect to various vitamins (e.g. vitamin A, Bs, D, E, K), mineras,
and trace elements (Lieber and DeCarli, 1989). All commercial diets usualy contain
adeguate amounts of these elements as well as of macronutrients.

The antioxidant capacity of the liver is of particular importance in situations which
involve enhanced lipid peroxidation, which is especialy marked with a high intake of
polyunsaturated fatty acids (Pawlosky et al., 1997). Hepatic vitamin E stores are
reduced if alcohol is given with a vitamin E deficient diet, leading to accumulation of
lipid peroxidation products and increased serum ALAT activity (Sadrzadeh et al.,
1994). However, high-dose vitamin E supplementation does not reverse alcohol-
induced histopathological changes (Sadrzadeh et al., 1995).

Vitamin A deficiency orits reduced bioavailability, as well as its excess, can all
aggravate acoholic liver injury (Leo and Lieber, 1983; Lieber and DeCarli, 1989).
Thus, in designing diet composition, it is important to keep in mind that the
therapeutic window for vitamin A isrelatively narrow (Ainley et al., 1988).

Choline has received specia attention in the pathogenesis of ALD. Choline
deficiency in itself causes fatty liver and fibrosis in rodents, and alcohol enhances the
choline requirement (Rogers et al., 1981). Liver injuries of several etiologies are
augmented if the diet is poor in choline (Eastin et al., 1997). Severe folate deficiency
may secondarily aggravate these changes (Kim et al., 1994).

An important goal in experimental studies on ALD is to develop more specific
treatment methods. For example, S-Adenosyl-I-methionine (SAM) enhances the
synthesis of glutathione, a nonprotein thiol crucial in antioxidant defense (Lu, 1998).
Ethanol-induced depletion of glutathione is reversed by administration of SAM in
baboons, and recent findings suggest that it may also increase survival in patients with
liver disease (Lieber, 1999; Mato et al., 1999). Promising results in counteracting the
fibrotic process have been achieved with the baboon model. Administration of fatty
acid lecithin or its main component phosphatidylcholine may afford protection against
alcoholic fibrosis and cirrhosis (Lieber, 1999).

2.3 Inflammatory responses

Inflammation is the body’s response to infection or local tissue damage. In most
situationsit is a protective mechanism that prevents the spread of injury and mobilizes
the defense mechanisms of the immune system. However, prolonged and excessive
inflammation is a pathological process that may lead to the aggravation of tissue
damage. With respect to pathogenesis, many features of acoholic liver injury are
typical of immune-mediated diseases. These include an absence of a clear dose-effect
relationship and a remarkable variation in individual susceptibility. Furthermore, in
alcoholic hepatitis damage is known to progress even after cessation of alcohol
ingestion. As with many other immune-mediated diseases, women are more
susceptible to ALD than men. Indeed, a large number of immunological changes have
been observed to occur in alcoholic liver disease and aso after consumption of
alcohol. Recently, the activation of inflammatory cytokine cascades has been
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recognized as a central processin the progression of ALD (Thurman et al., 1998). It is
now becoming evident that gut-derived endotoxins promote inflammatory responses
viaactivation of the resident liver macrophages, Kupffer cells.

2.3.1 Role of Kupffer cells

The mononuclear phagocyte system consists of peripheral tissue macrophages,
blood monocytes, and their bone marrow precursors. The most differentiated cells in
the system, tissue macrophages, are also functionally the most active ones.
Characteristic features for macrophages include their long life span, phagocytic
capacity, lysosomes and endocytic vacuoles, and an ability to produce a variety of
mediators such as cytokines and prostaglandins. Kupffer cells are the largest
population of resident macrophages, constituting more than 80% of the body’s total
phagocytic activity. They are located in the hepatic sinusoids, where their primary
roleis the phagocytic clearance of the blood from the portal circulation.

A number of studies have shown that the activation of Kupffer cell is a key event
in the initiation and perpetuation of inflammation in liver injury of various etiologies
(Rosser and Gores, 1995; Lichtman and Lemasters, 1999). Selective inhibition of
Kupffer cells by administration of either gadolinium chloride or methyl pamitate
results in abrogation of hepatic injury in many models. Conversely, priming of these
cells, for example, by Propionibacterium acnes, augments hepatic injury (Laskin et
al., 1997). Kupffer cells may be activated by gut-derived endotoxins, inflammatory
signals, oxidative stress, and hypoxia. In addition to their increased phagocytic
capacity, activated Kupffer cells are a source of considerable amounts of biologically
active products, including proinflammatory cytokines (TNF-a, IL-1, IL-6),
prostaglandins (particularly PGE;), and reactive oxygen intermediates, such as
hydrogen peroxide and superoxide (Smedsred et al., 1994). All these products play
important roles in the host’s defense against bacteria, but at the same time, they can
be detrimental to the tissue locally. Kupffer cells also participate in recruitment and
activation of other inflammatory cells, such as monocytes and PMNs, which produce
additional injurious effects (Winwood and Arthur, 1993).

Results from severa investigations suggest that Kupffer cells are involved in the
etiology of ALD. Both the acute and chronic consumption of alcohol affect many
Kupffer cell functions, such as cytokine production, phagocytosis, bactericidal
activity, and opening of Ca?* channels (Earnest et al., 1993). The administration of
gadolinium chloride has been reported to prevent the experimental ALD produced by
intragastric ethanol administration (Adachi et al., 1994). Nimodipine, which prevents
Ca’* channel opening essential for Kupffer cell activation, also decreases the extent of
experimental ALD (Kawadaet al., 1992; limuro et al., 1996).

2.3.1.1 Modification of Kupffer cell function by gadolinium
chloride

A trivalent cation of the lanthanide series, gadolinium chloride (GdCl3), is
commonly used to deplete Kupffer cells. When rats are pretreated with GdCls, they
are protected from the hepatotoxic effects of endotoxin, paracetamol, carbon
tetrachloride, galactosamine, and diethyldithiocarbamate (Towner et al., 1994;
Ishiyama et al., 1995; Laskin et al., 1995; Liu et al., 1995). In addition, gadolinium
chloride has been shown to prevent the progression of ethanol-related liver injury in
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rats after chronic intragastric ethanol feeding (Adachi et al., 1994). The mechanisms
causing the protection, however, are poorly defined. It has been suggested that
gadolinium chloride acts by displacing Ca®™* ion in the extracellular side of the
calcium channel, thus blocking calcium influx and efflux (Hambly and dos Remedios,
1977; Pillai and Bikle, 1992; Roland et al., 1999). Thisis supported by experimentsin
which chelating agents prevent the blockage of calcium channels (LeGuennec et al.,
1996). In addition, intrasynaptosomal free Ca’* levels are dose-dependently inhibited
by gadolinium (Romano-Silvaet al., 1994).

Gadolinium chloride is soluble in acidic conditions, but becomes aggregated in the
blood stream due to its neutral pH. Microscopic examinations have shown that i.v.
administered GdCl; is largely taken up by Kupffer cells (Husztik et al., 1980).
Gadolinium chloride inhibits Kupffer cell phagocytosis in vivo (Husztik et al., 1980),
impairs Kupffer cell antigen presentation and generation of reactive oxygen species
(Roland et al., 1993; Liu et al., 1995), and reduces mortality in sepsis (limuro et al.,
1994; Vollmar et al., 1996). Moreover, aterations in Kupffer cell phenotypes have
been reported. GACl; downregulates the expression of ED1, ED2, and the Kupffer
cell-specific lectin-binding receptor (KCR), and abolishes peroxidase activity; but the
expression of the monocyte-macrophage specific gene product Pu-1 remains
unchanged (Hardonk et al., 1992; Kohno et al., 1997; Koop et al., 1997). While the
Kupffer cellsin the periporta region may be even completely eliminated, gadolinium
chloride seem to be ineffective in a subpopulation of Kupffer cells that probably
contribute to the proinflammatory cytokine production (Hardonk et al., 1992; Rai et
al., 1996; Ahmad et al., 1999). The in vitro secretory pattern of isolated Kupffer cells
changes after in vivo GdCls, with a decrease in IL-10 and PGE; release, and an
increase in proinflammatory cytokine TNF-a and IL-6 release (Rai et al., 1996). It is
intriguing that while gadolinium chloride reduces mortality in sepsis, it does not
decrease the level of TNF-a, which is supposed to be the proximal mediator of most
of the eventsin sepsis (limuro et al., 1994).

2.3.2 Polymorphonuclear neutrophils

Histologically, alcoholic hepatitis in humans is characterized by an infiltration of
polymorphonuclear neutrophils (PMNSs) into liver tissue. Influx and activation of
neutrophils to the focal sites of injury are thought to be pivotal events in the
development of hepatocyte damage during inflammation. Neutrophils in a stimulated
state are able to release large amounts of proteolytic enzymes and reactive oxygen
intermediates (Liu et al., 1994). Experimental evidence suggests that
polymorphonuclear neutrophils aggravate injury, while their depletion prevents it
(Molnar et al., 1998). In rat models of alcoholic liver disease, however, the neutrophil
infiltration is generally sparse.

2.3.3 Endotoxin

Endotoxin, also known as lipopolysaccharide (LPS), represents the major
component of the outer cell wall membrane of al gram-negative bacteria. It forms a
hydrophobic barrier that restricts entry of many substances, such as antibiotics, into
the cell. This glycolipid is responsible for many of the pathophysiological effects of
these bacteria. Endotoxin can be divided into three structura regions: i.e., the O-
specific side chain, the core polysaccharide, and the lipid A component. The O-chain,
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characterized by repeating polymers of oligosaccharides, is highly variable and
antigenic, and is structurally unique for a given bacterial serotype. The core region is
structurally less variable and can be divided into the outer and inner core. The magjor
bioactive component of endotoxin resides in the lipid A portion. It is the most
conserved part of endotoxin, and includes two glycosamine sugars modified by
phosphate and a variable number of fatty acids. Using purified and synthetic
preparations of lipid A, it was demonstrated that lipid A is responsible for most of the
effects of endotoxin (Shibaet al., 1984; Galanos et al., 1985).

Endotoxemia, i.e., the excessive presence of endotoxin in blood, is associated with
a number of pathophysiological alterations both in experimental animals and in
humans. During severe Gram-negative infections, a large amount of endotoxin may
cause a condition called endotoxic shock. It is a result of an overwhelming
inflammatory response by endotoxin-activated cells, which results in tissue
destruction, respiratory distress, profound hypotension, intravascular blood
coagulation, and if not reversed, death. The main target organ for endotoxin is the
liver. After i.v. administration, 80-90% of endotoxin is taken up rapidly by Kupffer
cells, whereit isinternalized and subsequently modified (Ruiter et al., 1981).

The human intestine contains about 10* bacteria, many of them Gram-negative,
providing a huge amount of potentially proinflammatory organisms (Goldin, 1990). In
normal situations, bacteria continuously translocate through the intestinal wall in low
numbers, but these bacteria are readily detoxified by lymphoid organs, such as
mesenteric lymph nodes, and eventualy by Kupffer cells. When the host immune
defense or liver function is impaired, endotoxins may spill over into the periphera
blood stream. Alternatively, the release of endotoxin into circulation is enhanced by
proliferation of flora or when bacteria die or lyse, for example, from antibiotics
(Evans and Pollack, 1993). In these situations the increased production of endotoxin
exceeds the clearance capacity of reticuloendothelial system.

Endotoxin has been shown to be a pivotal cofactor in the development of liver
diseases. Experimental cirrhosis in rats due to choline-deficiency can be prevented by
sterilizing the gut with antibiotics (Nolan, 1989). The presence of endotoxin is also
essential for the acute liver injury associated with exposure to carbon tetrachloride
(CCl,) and D-gaactosamine. For example, D-galactosamine toxicity is prevented if
the small bowel and colon, the large reservoirs of endotoxin, are resected (Galanos et
al., 1979). Polymyxin B, which has direct anti-endotoxin properties, protects against
CCl, toxicity (Nolan and Leibowitz, 1978). However, gentamicin, which does not
interact with endotoxin, has no protective effect (Nolan and Leibowitz, 1978).
Hepatotoxin sensitivity often correlates with endotoxin sensitivity, as shown by
studies with both endotoxin resistant (strain C3H/HelJ) and endotoxin sensitive (strain
C3H/HeN) mice (Freudenberg and Galanos, 1991; Essani et al., 1995).

Alcoholics, especially those with liver disease, regularly have systemic
endotoxemia (Bode et al., 1987). The serum IgA anti-lipid A titers from patients with
ALD are elevated as an indication of bacterial trandocation (Nolan et al., 1986). This
may be promoted by multiple, synergistic mechanisms. Alcohol consumption may
lead to intestinal bacterial overgrowth, or may increase intestinal permeability.
Endotoxemia may also occur as a result of the liver's reduced capacity to clear
endotoxin from the portal circulation. Experimentally, elevation of portal endotoxin
has been detected 2 hrs after an alcohol challenge (Enomoto et al., 1999). Systemic
endotoxin levels begin to increase 1-2 weeks after the addition of ethanol to the diet in
rats, and a correlation between blood endotoxin and pathology is observed (Nanji et
al., 1993; Adachi et al., 1995). The pathogenic importance of gut-derived endotoxin is
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supported by experimental studies in which ethanol-induced liver injury is alleviated
by administration of antibiotics or lactobacillus, both of which reduce endotoxin in
the gut (Nanji et al., 1994b; Adachi et al., 1995).

2.3.4 CD14 endotoxin receptor

Endotoxin is not cytotoxic and does not evoke its responses directly. Instead, tissue
toxicity results from the synthesis and release by endotoxin-activated cells of various
mediators. Studies by Wright et al. (1990) demonstrated that CD14 protein functions
as areceptor for LPS and for its carrier, the LPS-binding protein (LBP). CD14 isa 55
kDa myeloid membrane glycoprotein, expressed mainly by monocytes and
macrophages, and at low levels also on the surface of polymorphonuclear leukocytes
(Antal-Szalmas et al., 1997; Kitchens, 2000). Upon binding to the CD14 receptor,
endotoxin forms a complex with the lipopolysaccharide binding protein (LBP) that
promotes features of cell activation, such as cytokine production and the generation of
oxygen species (Schumann et al., 1990). The association of CD14 to cell activation
has been shown in studies in which transgenic mice that overexpressed CD14 protein
exhibited hypersensitivity to endotoxin (Ferrero et al., 1993), while CD14 knock-out
mice were resistant to it (Haziot et al., 1996). Furthermore, antibodies against CD14
are able to block binding of LPS to macrophages as well as cytokine production
(Wright et al., 1990).

The inhibition of LPS-induced cytokine release by an antibody to CD14 is most
pronounced a low LPS concentrations, and is only partia at higher LPS
concentrations (Kitchens, 2000). A possible explanation for this observation is that
cell stimulation occurs at high, possibly supraphysiological, LPS concentrations via
both CD14-dependent and independent pathways (Su et al., 1995). LPS is also bound
to some extent by other membrane proteins, such as members of the CD11/CD18
family and scavenger receptors, but a clear association to cell activation has been
demonstrated only with CD14.

Comparatively little is known about intracellular signaling pathways after binding
of LPS to CD14. CD14 is anchored to the cell surface by linkage to glycosyl-
phosphatidyl inositol, and lacks the intracellular protein sequence required for signal
transfer (Ulevitch and Tobias, 1995). It seems that many endotoxin-induced CD14-
dependent effects are mediated via an early tyrosine kinase-dependent protein
phosphorylation step (Dong et al., 1993; Weinstein et al., 1993). The next step is the
activation of the transcription factor, NF-kB. This results from phosphorylation and
degradation of an inhibitor protein, I-xB. The release of NF-kB from I-xB permits
translocation of NF-kB into the nucleus, where it binds to DNA enhancer motifs and
regulates the transcription of a variety of genes, for example, those of
proinflammatory cytokines (Chen et al., 1999).

Although the tyrosine kinase step is dependent upon CD14, the mechanisms by
which binding of LPS to CD14 leads to activation of tyrosine kinases remains
unknown, since CD14 does not have intrinsic tyrosine kinase activity (Liu et al.,
1994b). This has led to the hypothesis that another membrane protein(s) is (are) also
involved as a co-receptor. New evidence indicates that TLR4, a recently cloned
member of the human transmembrane Toll-like receptors, may be the endotoxin co-
receptor (Chow et al., 1999; Hoshino et al., 1999). In vitro transfection with the TLR4
gene conferred endotoxin responsiveness in cells, and this was augmented by addition
of CD14.

A soluble form of receptor, sSCD14, has aso been found in humans at a plasma
concentration of about 2 to 6 pug/ml (Oesterreicher et al., 1995; Burgmann et al.,
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1996). The soluble form is produced by shedding the cell surface form, which results
in an approximately 48 kDa molecule (Haziot et al. 1988; Labeta et al., 1993). The
biological functions of sCD14 are not yet fully elucidated. In vitro studies show that
sCD14 can bind to LPS, and these complexes are able to stimulate non-myeloid cell
types, such as endothelial cells and some epithelia cells, that do not express
membrane CD14. This stimulation is thought to occur through an unidentified
receptor, leading to the cell activation (Pugin et al. 1995; Tapping and Tobias, 2000).
Alternatively, it was proposed that sCD14 may function by neutralizing endotoxins,
by inhibiting endotoxin binding to monocytes or by delivering endotoxin to high-
density lipoprotein particles and phospholipid vesicles (Maliszewski, 1991; Wurfel et
al., 1995).

In addition to endotoxin, CD14 recognizes a set of microbial ligands with similar
structural features. Indirect studies have suggested that CD14 acts as a receptor not
only to the Lipid A of endotoxin but also to certain bacterial envelope components
found in Gram-positive bacteria. These include peptidoglycan, lipoteichoic acid and
phosphatidylcholine (Yu et al., 1997; Dziarski et al., 2000). In this respect, CD14
functions as a “ pattern receptor” of the innate immune system. However, the in vivo
significance of these structures is doubtable, since up to 1000-fold higher
concentrations of peptidoglycan, for example, than LPS may be required (Hamann et
al., 1998).

Kupffer cell CD14 protein expression is normally low, but increases in various
conditions, such as in cholestasis, and in acute and chronic active hepatitis (Tomita et
al., 1994; Tracy and Fox, 1995). The level of CD14 expression, originaly defined as
a myeloid differentiation marker, also depends upon the stage of cell maturation
(Trinchieri et al., 1987; Pan et al., 1999). Mouse Kupffer cell and human monocyte
CD14 have been shown to be upregulated by LPS, suggesting that the
proinflammatory response could be enhanced by this mechanism. The importance of
the CD14-dependent pathways in the development of liver damage has been
confirmed in studies, in which the endotoxin-induced hepatocellular necrosis and
hepatitis are alleviated in CD14 knock-out mice (Woltmann et al., 1999).

2.3.5 Lipopolysaccharide binding protein (LBP)

Endotoxin in circulation forms complexes with the lipopolysaccharide binding
protein (LBP), which binds to the lipid A portion of LPS with a high affinity (Tobias
et al., 1989). Transfer of endotoxin to CD14 on the membranes of macrophages is
mediated by this protein, cell activation being 100 to 1000 more efficient in the
presence of LBP (Heumann et al., 1992; Hallman et al., 1994). Especidly at low
endotoxin concentrations, LBP has a pivotal role in the target cell endotoxin
recognition. LBP is synthesized by hepatocytes as a 50 kDa polypeptide, and is
released after glycosylation into the plasmain the form of a 60 kDa protein (Ramadori
et al., 1990; Schumann et al., 1990). The amino-terminal half of LBP is responsible
for the specific binding to LPS, while the carboxyl-termina half of the protein
interacts with CD14 (Kirkland et al., 1993; Han et al., 1998). LBP has many
properties of a type | acute phase protein, since the serum levels rise substantially
during a stress response (Grube et al., 1994). The synthesis of LBP by hepatocytesis
upregulated during endotoxemia and inflammation, for example, by cytokines IL-6
and TNF-a (Grube et al., 1994; Geller et al., 1993). The importance of LBP in the
pathophysiological events of sepsisis indicated in many studies. LBP knock-out mice
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are unable to combat intraperitoneal Gram-negative infections (Jack et al., 1997).
Depletion of serum LBP by anti-LBP monoclonal antibodies suppressed the binding
of LPS to monocytes (Heumann et al., 1992). Furthermore, the administration of anti-
LBP antibodies in vivo prevents lethality in endotoxemia (Gallay et al., 1993).

2.3.6 Cytokines

One of the major responses to endotoxin in vivo is the rapid production and
secretion of soluble mediators of inflammation, cytokines. Cytokines are low-
molecular (less than 50 kDa) polypeptides, produced mainly by the monocyte-
macrophage lineage, the maor population of which are Kupffer cells. Especially
during endotoxemia, Kupffer cells are thought to be the most important contributor to
the overal cytokine production. In addition to macrophages, several cytokines are
also produced to some extent by lymphocytes, endothelial cells, and Ito cells.

The clarification of the specific roles and functions of each cytokine is difficult
because of their large number and their overlapping or synergistic activities.
Cytokines are needed in the immune defense against microorganisms, and to combat
localized infections. They aso have, however, been increasingly implicated in the
pathogenesis of various forms of liver injury. Cytokines can be divided into those that
mainly induce inflammatory and immune mechanisms (proinflammatory cytokines,
such as TNF-a, IL-1, IL-8) and those that have the capacity to inhibit them (anti-
inflammatory cytokines, such as IL-4, IL-10, IL-13, and TGF-[3).

2.3.6.1 Proinflammatory cytokines

Tumor necrosis factor alpha (TNF-a) is recognized as the initial and the most
important mediator of many inflammatory processes. Administration of recombinant
TNF-a to experimental animals or humans mimics several of the responses attributed
to endotoxin itself, such as symptoms of the sepsis syndrome, including fever,
anorexia, muscle wasting, and neutrophilia (Remick et al., 1987). Antibodies against
TNF-a are able to protect against the lethality of either endotoxin or gram-negative
bacteria (Beutler et al., 1985; Tracey et al., 1987).

TNF-o was originally identified as a macrophage-derived factor that caused
hemorrhagic necrosis in murine tumors (Carswell et al., 1975). Later a17 kDa protein
was isolated that caused severe wasting in infected animals; it was termed cachectin
(Beutler and Cerami, 1986; Tracey et al., 1988). TNF-o is unique among
proinflammatory cytokines due to its capacity to induce cell necrosis and apoptosis
directly (Leist et al., 1994; Wang et al., 1995). Secreted monomers of TNF-o are
thought to associate to form a biologically active trimer. It can bind to either of the
two TNF-a receptors expressed on the target cells, TNF-R1 (55 kDa) or TNF-R2 (75
kDa). There is no homology between the intracellular parts of the two receptors,
suggesting that the signal transduction pathways are different (Fiers, 1991). TNF-R1
has been recognized to be responsible for most of the cellular effects of TNF-a, such
as cytotoxicity, stimulation of cytokine synthesis and upregulation of various cell
surface molecules (Tartagliaet al., 1993). The TNF-R1—deficient mice are resistant to
lethal endotoxin shock (Pfeffer et al., 1993). TNF-R2 signaling seems to be restricted
mostly to T-cell proliferation (Grell et al., 1998).

Many studies have suggested a role for proinflammatory cytokines, especially
TNF-a, in the development and progression of alcoholic liver disease. Several of the
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clinical manifestations of ALD resemble the biological effects following the in vivo
administration of proinflammatory cytokines, suggesting that cytokines contribute to
the clinical complications and to the liver injury (McClain et al., 1999). Indeed,
elevated serum levels of cytokines, such as TNF-a, are observed in acute hepatitis
patients, or even in alcoholics without liver disease (Bird et al., 1990; Khoruts et al.,
1991). The serum concentrations of TNF-a correlate with the severity of liver injury
in patients with alcoholic hepatitis and are also a significant predictor of its clinica
outcome (Felver et al., 1990; Rodriguez-Rodriguez et al., 1995).

A number of animal experiments studying the involvement of TNF-a in alcoholic
liver disease have been performed. Induction of hepatic mRNA expression of TNF-a
is evident in experimental acoholic liver disease (Kamimura and Tsukamoto, 1995).
Moreover, the incidence of an increase in hepatic mRNA is associated with the
development of ethanol-induced liver injury (Nanji et al., 1994c). The importance of
TNF-0. as a proximal mediator of ethanol-induced liver damage has been
demonstrated in rats in which administration of TNF-o antibodies prevented liver
necrosis and inflammation, but interestingly not steatosis (limuro et al., 1997).
Knockout mice lacking TNF-R1 receptors are protected from inflammatory responses
associated with chronic ethanol administration (Yin et al., 1999). However, ethanol
does not necessarily promote TNF-o production directly. The addition of ethanol to
monocyte cultures inhibits TNF-a production (Basista €t al., 1993).

In addition to TNF-0, proinflammatory cytokines IL-1 and IL-6, and the
chemokine IL-8 are considered to be important mediators in alcoholic liver disease
(McClain et al., 1999). Each one may enhance the effects of the others and act
synergistically. Although interleukin-1 (IL-1) appears to participate in the
pathogenesis of ALD, it does not seem to cause liver injury itself but rather actsin a
synergistic fashion with TNF-a (McClain et al., 1999). As with TNF-q, alcoholic
hepatitis patients show increased plasma levels of IL-1 and an enhanced endotoxin-
induced release of IL-1 by monocytes (McClain et al., 1986; Bird et al., 1989;
Khoruts et al., 1991). IL-1 exists as two distinct and separate gene products, IL-1a
and IL-1B, both of which are produced by activated monocytes and macrophages
(Roux-Lombard, 1998).

2.3.6.2 Anti-inflammatory cytokines

To counterbalance the overshooting inflammatory processes, the effects of
proinflammatory cytokines are endogenously modulated by anti-inflammatory
mediators. Thus the presence of proinflammatory cytokines does not necessarily
imply that inflammatory processes are occurring in body. It seems to be important to
characterize the baance between both proinflammatory and anti-inflammatory
cytokines in order to assess the nature of inflammatory responses. A number of
cytokines have inhibitory actions on awide range of monocyte-macrophage functions.
These include interleukins 4, 10, and 13 and transforming growth factor beta (TGF-f3)
(Opal and DePalo, 2000).

IL-10 is considered to be the most potent anti-inflammatory molecule: it inhibits
the production of TNF-a and IL-1 and suppresses the activation of NF-kB (Moore et
al., 1993; Burger and Dayer, 1995; Chernoff et al. 1995). In addition, it reduces
macrophage production of nitric oxide and reactive oxygen intermediates (Bogdan et
al., 1991; Cenci et al., 1993), eicosanoid synthesis (Niiro et al., 1994), expression of
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adhesion molecules (Willems et al., 1994) and chemokine synthesis (Kasama et al.,
1994; Wang et al., 1994).

Interleukin-10 is not normally expressed in the liver, but its synthesis by Kupffer
cells is upregulated early in the course of liver injury and by endotoxin and
proinflammatory cytokines (Knolle et al., 1995; Nanji et al., 1999). The ability of
endogenous IL-10 to protect against hepatotoxicity has been shown in several models
of experimental liver injury, including those induced by endotoxin and galactosamine,
and also in hepatic ischemialreperfusion injury (Louis et al., 1997; Y oshidome et al.,
1999). Furthermore, IL-10 knockout mice developed enterocolitis and colon cancer
spontaneously with aberrant cytokine production (Berg et al., 1996).

In addition to its pivotal role in fibrogenesis, TGF-f antagonizes specific effects of
proinflammatory cytokines and has multiple other effects as a negative
immunoregulatory agent (McCarthy, 1994; McCartney-Francis et al., 1998). It is
expressed mainly by Kupffer cells and activated stellate cells (De Bleser et al., 1997).
Hepatic TGF-B expression is increased in liver biopsies from patients with liver
disease, and in isolated Kupffer cells after 10 weeks of ethanol treatment with the
intragastric ethanol feeding model (Kamimura et al. 1995).

2.3.7 Priming, sensitization, and tolerance to endotoxin

For endotoxin-induced liver damage to develop, it is considered that priming
and/or sensitization to the effects of endotoxin is required (Tracey and Cerami, 1993;
McClain et al., 1999). Primed inflammatory cells release massive amounts of TNF-q
and other cytokines in response to stimuli. Not only Kupferr cells but also the target
cells — the hepatocytes — must be sensitized to injury. Hepatocytes are normally
resistant to the cytotoxic effects of TNF-a, but they become susceptible to normally
innocuous amounts of TNF-a injury by mechanisms termed “sensitization” (Tiegs et
al., 1989; Shedlofsky et al., 1991). TNF-o has been shown to be cytotoxic in a dose-
dependent fashion to sensitized Hep G2 cells (Hill et al., 1995). However, repeated
endotoxin confrontation leads to an attenuation of amost al pathophysiological
effects that are mediated by endotoxin and proinflammatory cytokines, producing a
state called endotoxin tolerance (Ziegler-Heitbrock, 1995).

2.3.7.1 Priming

One way to prime Kupffer cells is by pretreatment with Corynebacterium parvum
(Smith et al., 1993). As a result, the production of TNF-a and IL-1 is strongly
enhanced in response to endotoxin challenge. Chronic ethanol may have a priming
effect on monocytes and macrophages. Monocytes isolated from patients with ALD
have been observed to have an enhanced release of TNF-o. compared to healthy
controls (McClain and Cohen, 1989). Kupffer cells isolated from ethanol-treated rats
exhibited enhanced TNF-a release in response to endotoxin (Enomoto et al., 1998). In
livers of chronically ethanol-treated rats, enhanced transcriptional activity and serum
levels of cytokines are seen in response to an acute endotoxin challenge (Honchel et
al., 1992; Hansen et al., 1994; Pennington et al., 1997).
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2.3.7.2 Sensitization

Sengitization occurs via severa discrete mechanisms that culminate to the
defective adaptation to oxidative stress and inflammatory factors, such as TNF- «
(Hansen et al., 1994; Coléell et al., 1998). Classic examples of hepatocyte sensitization
to TNF-o involve protein or mRNA synthesis inhibitors cycloheximide or D-
gaactosamine (Hill et al., 1995). Mice treated with D-galactosamine become
sensitive to the lethal effects of submicrograms of endotoxin or TNF-a (Galanos et
al., 1979; Lehmann et al., 1987). Prior administration of anti-TNF-a antibodies
attenuated histological changesin the liver and serum transaminase activity caused by
gaactosamine/endotoxin administration (Hishinuma et al., 1990; Fiedler et al., 1992).
It has been postulated that sensitized hepatocytes failed to make the protective
antioxidant enzymes that are necessary to withstand cytotoxicity to TNF-o (Wong et
al., 1989; Leist et al., 1994). In addition, TNF-R1 upregulation has also been
suggested as a mechanims for hepatocyte sensitization (Nagaki et al., 1999).

A phenomenon resembling hepatocyte sensitization is also seen during chronic
acohol exposure. Fatty livers from chronically ethanol-fed rats are extremely
susceptible to endotoxin: a single minimal dose of endotoxin induced inflammation
and fulminant necrosis that were not seen in rats fed control diet (Bhagwandeen et al.,
1987). Furthermore, fatty hepatocytes isolated from chronically alcohol-treated rats
have been demonstrated to become sensitive to TNF-a -induced cell death in vitro, in
a similar way as to LPS in vivo (Pennington et al., 1997; Colell at a.,1998). The
mechanisms by which ethanol increases cell death caused by TNF-a may be partly
explained in terms of selective reduction of hepatic mitochondrial GSH (Colell et al.,
1998).

2.3.7.3 Tolerance

In endotoxin tolerance, various responses of Kupffer cells to endotoxin are
downregulated and lethality is reduced (Ziegler-Heitbrock, 1995). Tolerance may be
induced by a single or repeated injections of endotoxin or recombinant TNF-o, (Patton
et al., 1987; Schade et al., 1995). Two distinct phases of tolerance are recognized.
Early endotoxin tolerance, in which monocytessmacrophages play a primary role,
develops within 24h of the first endotoxin challenge. It is dependent upon lipid A and
is characterized by an attenuation of increase in proinflammatory cytokine levels upon
a second endotoxin challenge (LaRue and McCall, 1994; Yoza et al., 2000). In
addition, secretion of anti-inflammatory cytokine IL-10 and production of PGE, are
enhanced (Hafenrichter et al. 1994). Early endotoxin tolerance disappears within 12
days after the initial LPS exposure (Sanchez-Cantu et al., 1989; Ziegler-Heitbrock,
1995). The late phase of the tolerance is mediated by formation of antibodies specific
for the O-antigen polysaccharide side chain, and lasts from weeks to months. In
endotoxin tolerance, target cells also become less vulnerable, since TNF-o -
susceptible cell lines can be made TNF-a -resistant in vitro by pre-exposures to TNF-
o (Zimmerman et al., 1989; Imanishi et al., 1997).

Suppression of the immune system is characteristic for alcohol under certain
circumstances (Spitzer and Bautista, 1993; Szabo, 1999). The conditions by which
alcohol inhibits inflammatory responses and how this is related to immune activation
are yet not clear. Especially in acute alcohol intoxication, an attenuation of endotoxin-
induced cytokine and superoxide production has been observed (Spitzer and Bautista,

28



1998). The plasma ethanol concentrations show an inverse correlation to the
endotoxin-induced peak TNF-a activities (D’Souza et al., 1989). In fact, acute alcohol
may even protect the liver from the hepatotoxicity of LPS (Bautista and Spitzer,
1996). These effects have a highly time-dependent nature. Kupffer cells were shown
to be in a hyporeactive state during the first hours after ethanol administration, as the
LPS-induced TNF-a -release is diminished (Enomoto et al., 1998). However, after 24
hours, Kupffer cell were in a stimulated state as shown by enhanced TNF- o and Ca®*
release, and induced CD14 expression. All these effects were blunted by antibiotics to
sterilize the gut, demonstrating that endotoxin, but not ethanol per se, stimulates the
cytokine production.

2.4 Oxidative stress and hepatic antioxidant defense

2.4.1 Generation of reactive oxygen species

Oxidative stress occurs when there is an imbalance between pro-oxidants and
antioxidants, either due to an overwhelming generation of oxidizing species or due to
a relative lack of antioxidant defense capacity. There is considerable clinica and
experimental evidence for increased oxidative stress in acoholic liver disease. It is a
common consequence of both acute and chronic ethanol administration to rats and
also to humans (Nakgima et al., 1992; French et al., 1993; Meagher et al., 1999).
Ethanol-induced production of free radicals in the liver has been detected by a
sensitive assay based upon spin-trapping agents (Knecht et al., 1990). Although
increased oxidative stress is well documented, the precise pathogenic significance of
it remains a subject of controversy (Ishii et al., 1997). Oxidative stress may cause
tissue injury directly by initiating a chain of peroxidation processes in the cells, or
potentially it may activate inflammatory responses by stimulation of the transcription
of pro-inflammatory cytokines.

Following chronic ethanol administration, induction of CYP2EL leads to an
increased microsomal free radical generation. Although the quantitative significance
of CYP2EL in ethanol oxidation may be small, its potential to generate oxygen-
derived free radicals through NADPH oxidase activity may be high, and it is
suggested to be responsible for the hepatotoxicity after chronic ethanol administration
(Morimoto et al., 1995; Lieber, 1997). This notion is supported by the finding that the
sengitivity of isolated hepatic microsomes to iron-catalyzed lipid peroxidation is
increased in conjunction with CYP2EL induction (Castillo et al., 1992). Furthermore,
CYP2E1-mediated generation of a-hydroxyethyl radical adducts in vitro and in vivo
correlates with lipid peroxidation (Albano et al., 1996). Another major intracellular
source of oxidative stress during alcohol metabolism may be the mitochondria
respiratory chain, which generates superoxide anions in response to a decrease in the
NAD/NADH ratio (Nordmann et al., 1992). NADH is aso capable of inhibiting the
activity of xanthine dehydrogenase, which results in a shift of purine oxidation to
xanthine oxidase. Recent study with allopurinol pointed to xanthine oxidase as the
major intracellular source of reactive oxygen species in experimental ALD (Kono et
al., 2000b).

A number of in vivo and in vitro studies have presented arole for activated Kupffer
cells and polymorphonuclear neutrophils as a significant source of extracellular
reactive oxygen species production in the liver. Inflammatory cells generate reactive
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oxygen species by NADPH oxidase in response to stimuli, such as endotoxin and pro-
inflammatory cytokines. Indeed, the generation of oxygen-derived free radicals by the
liver is evident during endotoxemia (Jaeschke et al., 1996). Enhanced formation of
reactive oxygen species by Kupffer cells and neutrophilsis seenin ALD (Bautistaand
Spitzer, 1999). Consistently, inhibition of Kupffer cell function with GACI diminishes
free radical formation during alcohol intoxication by over 50% (Knecht et al., 1995).
It is suggested that the activation of free radical release is mediated directly by alcohol
in the acute situation, but after chronic alcohol through endotoxin and cytokines
(Bautista and Spitzer, 1999).

2.4.2 Hepatic antioxidant defense

Oxidative stress may be harmful to the liver only if the defensive capacity is not
able to cope with the increased free radical generation. Under normal conditions,
hepatic oxidative stress is efficiently counteracted by a variety of protective
antioxidant factors. Antioxidants may be insufficient, however, either if there is an
increased demand, or if antioxidant enzymes are inactivated due to the reactions with
freeradicals.

Glutathione (GSH) peroxidase, which detoxifies hydrogen peroxide, is an
important enzyme in the cell antioxidant defense system. Reduced GSH peroxidase
capacity may thus result in a diminished capacity to remove hydrogen peroxide.
Glutathione peroxidase is very susceptible to inactivation by oxidation from peroxides
and oxygen-derived free radicals generated during ethanol metabolism, presumably
by binding to the active site of the enzyme (Blum et al., 1985; Pigeolet et al., 1990;
Tabatabaie and Floyd, 1994; Kinter and Roberts, 1996). Indeed, a decrease in
glutathione peroxidase activity has been observed in rats after ethanol administration
(Ribiere et al., 1985; Ishii et al., 1997).

Glutathione is the maor cellular nucleophile, and provides an efficient
detoxification pathway for reactive substances (Deneke and Fanburg, 1989; Uhlig and
Wendel, 1992). Depletion of mitochondrial glutathione, which is observed after
chronic ethanol feeding, has been suggested to play a significant role in the
pathogenesis of ALD (Fernandez and Videla, 1981; Fernandez-Checa et al., 1997;
Rouach et al., 1997). The hepatic concentration of glutathione is an important factor
in the protection against oxidative stress, since alowering of GSH results in enhanced
cytotoxicity to ethanol in CYP2El-overexpressing cells (Chen and Cederbaum,
1998). Accordingly, the glutathione precursor, L-2-oxothiazolidine-4-carboxylic acid,
was found to protect rats from alcohol-induced liver injury (limuro et al., 2000).

3 Animal models of ethanol-induced liver damage

Animals have been administered ethanol chronically by various methods in
attempts to try to develop liver lesions resembling those seen in human ALD. Simple
inclusion of ethanol in the drinking fluid seldom causes high and sustained elevation
of blood ethanol levels and only a moderate rise in liver triglycerides is observed
(Lieber et al., 1989). If the concentration of ethanol in the drinking fluid is increased
above a certain level, intake decreases sharply, leading systemic dehydration, reduced
food intake, and ceased or reduced growth rate. One apparent exception to thisruleis
with rats weaned to an ethanol solution as their sole fluid (Landrigan et al. 1989;
Batey and Patterson 1991; Sinclair and Suomela 1994). The animals continued to gain
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weight with ethanol concentrations up to 50%, showed increased ethanol metabolism,
and sustained elevated blood ethanol levels, but liver damage occurred at most in only
aminority of the animals.

To overcome the failure of most animals otherwise to consume higher amounts of
ethanol voluntarily, it has been administered in a nutritionally adequate liquid diet that
provided a maximum of 35-40 % of total calories from alcohol. This situation
resembles that of many alcoholics, who often receive more than 50 % of their total
energy as ethanol (Patek et al., 1975; Salaspuro and Lieber, 1980). In rats this has
been achieved by administration of ethanol as a component of the liquid diet, either
oraly or by forced intragastric infusion. Some of the currently used animal models of
ALD aresummarized in Table 1.

3.1 Oral liquid diets

The method forces rats to consume high amounts of ethanol by its inclusion in a
balanced liquid diet that contains sufficient water and all necessary nutrients. It was
developed almost four decades ago (Lieber et al., 1963) and proved to be very useful
in studies of the pathogenesis of early ethanol-induced changes. Controls were pair-
fed an equicaloric amount of diet with ethanol replaced by carbohydrates (Lieber et
al., 1989). The improved formula consisted of casein (providing 18% of calories)
supplemented with methionine and cysteine, a mixture of dextrin and maltose
(providing 11% and 47% of calories for ethanol and control diets, respectively), and
fat (35% of calories, mainly olive oil, corn oil, and safflower oil). All essential
vitamins (A, D, E, K, Bs), minerds, and fiber were present (Lieber and DeCarli,
1986; Lieber et al., 1989). The amount of ethanol in the diet was gradually increased
during the first week to provide 36% of total calories.

This so caled “Lieber-DeCarli” formula has been extensively used in rodent
studies. The average daily ethanol intake, 12-15 g/kg, resulted in fatty liver and in
metabolic tolerance, i.e. their ethanol elimination rate was increased (Lieber and
DeCarli, 1970b). A 6-fold increase in hepatic triglycerides was observed after 1
month of feeding, an effect that persisted for 22 weeks (Lieber and DeCarli, 1970).
For proper fatty liver to develop, at least 21% of the calories had to be derived from
fat (Lieber and DeCarli, 1970), athough even a low-fat (13%) ethanol diet causes
some steatosis (Di Luzio and Hartman, 1969). The incorporation pattern of dietary
fatty acids in liver triglycerides indicated that most fat comes from the diet (Lieber et
al., 1966), and much less from hepatic lipogenesis (Tsukamoto et al., 1984). Lesions
beyond steatosis are rare in this model. For example, rats fed for up to 9 months had
no fibrotic changes (Leo and Lieber, 1983). This probably is a consequence of the
rather modest blood ethanol levels achieved with this regimen (Lieber et al., 1989).
The levels fluctuate with the circadian rhythm between 0 — 1.5 %o.

Sustained high blood acohol concentrations indeed seems to be a prerequisite for
the progression of alcoholic liver disease process beyond steatosis (Lieber and
DeCarli, 1976; French et al., 1995). Evidence for this was obtained by adding a low
dose of 4-methyl pyrazole (4-MP) to the diet to inhibit alcohol metabolism. Rats on
this diet had elevated ethanol levels and developed steatosis, inflammation, and mild
necrosis in 12 weeks (Lindros et al., 1983). A later study demonstrated exacerbated
damage with an increased fat content (Takada et al., 1986). The possibility cannot be
excluded, however, that 4-MP, even at low doses, may have had side effects (Lieber
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and DeCarli, 1970c), including the potential induction of CYP2EL, which may be
pathogenic (Koop et al., 1985; Dicker et al., 1991).

3.2 Intragastric ethanol feeding model

In this model ethanol liquid diet is fed through a permanent indwelling intragastric
catheter. By regular monitoring of blood ethanol levels, the ethanol infusion rate can
be titrated (to an average of 12-13 g/kg/d) and high blood ethanol levels achieved. As
in the oral feeding model, controls are infused with isocal oric amounts of ethanol-free
diet, with carbohydrates replacing ethanol.

The gastrostomy tube is usualy implanted on adult rats weighing 300-400g
(Tsukamoto et al., 1985), but rats weighing 200-250g have also been used (French,
1993). In younger animals the liver injury was found to be more severe and the
fibrotic activity stronger (Takahashi et al., 1990). Either single or double gastrostomy
cannulas have been inserted via the neck into the stomach. The tube is connected to
spring coils and swivels to protect the cannulas and permit free movement of the
infused animal (Tsukamoto et al., 1985). Daily monitoring of alcohol intoxication is
necessary, since the rate of ethanol infusion needs to be adjusted to achieve
consistently high, yet tolerable ethanol levels. Monitoring of ethanol inebriation is by
jugular blood or urine sampling and also by visual inspection of the animals (Badger
etal., 1993b, Yinet al., 1999).

Approximately 30-50 % of the rats on ethanol diet developed macrovesicular and
microvesicular steatosis, focal necrosis, and mononuclear inflammation (Tsukamoto
et al.,, 1985; Tsukamoto et al., 1986; French et al., 1988b). Early perivenous
fibrogenesis starts to develop in 3-6 months, provided that a high-fat diet with 42% to
49% of total energy as ethanol, is infused (French et al., 1986; Tsukamoto et al.,
1986; Kamimura et al., 1992). Addition of carbonyl iron to the diet further aggravates
injurious changes (Tsukamoto et al., 1995).

A peculiar feature of the intragastric feeding procedure is that the blood alcohol
levels (BAL) go up and down over a 5-day cycle despite a constant ethanol dose. The
extent of ethanol fluctuation has been found to correlate to the degree of hepatic
damage (Tsukamoto et al., 1985b).

The intragastric feeding technique was recently applied to mice (Zhang-Gouillon et
al., 1998). One problem is that their metabolism of alcohol is so rapid (i.e. 25 g/kg/d)
that it is difficult to feed them enough ethanol without compromising their nutritional
balance. This may explain the frequent loss of animals reported during intragastric
ethanol feeding to mice (Zhang-Gouillon et al., 1998).

3.3 Primate models

The baboon model, developed in the early seventies (Lieber and DeCarli, 1974),
should be superior to other animal models, since extrapolation to human ALD can be
expected to be more straight forward. The baboons received up to 50 % of their
calories as ethanol and could be kept on ethanol liquid diet for years. Peak blood
alcohol levels in the baboons kept on a regimen with 11% carbohydrates approached
4 %0. The baboons developed more damage than seen in rodent studies. After 3-8
years on a diet with approximately 50% of the calories as ethanol, fatty liver,
increased mononuclear inflammatory activity, and perivenular fibrosis was seen in
most of the animals. In one or two out of five animals fibrosis eventually progressed
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to cirrhosis (Lieber and DeCarli 1974; Lieber et al., 1975; Popper and Lieber, 1980;
Lieber et al., 1990). This prevalence is approximately of the same magnitude as
among human alcoholics (Morgan, 1994). However, some of the histological features
typically seen in human acoholic hepatitis, such as heavy infiltration of neutrophil
polymorphs and formation Mallory bodies, were not observed (Popper and Lieber,
1980). Thisisin contradiction with the opinion that alcoholic hepatitis is an essential
step in the transition to cirrhosis.

The data were not replicated in another baboon study. Ainley et al. (1988) treated
baboons for up to 60 months, but no cirrhosis or even fibrosis developed. These
authors used a nutritionally different diet, the Mazuri primate diet supplemented with
lipotropes, vitamins, and minerals. They suggested that the diet used by Lieber et al.
was nutritionally inadequate and that this could explain the differences between the
studies. However, a follow-up baboon study demonstrated that supplementation with
massive amounts of choline and methionine failed to protect against ethanol
hepatotoxicity (Lieber and DeCarli, 1994).

Contradictory results have also been obtained with rhesus monkeys. Ethanol
given with a high-fat, low-choline diet produced cirrhosis in 8 months, but damage
was avoided by choline supplementation (Cueto et al., 1967). Several negative results
have been reported, in spite of high alcohol consumption (up to 50% of calories) and
extended study periods of 1-4.5 years (Rogers et al., 1981; Mezey et al., 1983). In a
recent rhesus monkey study, a diet marginal in antioxidants and containing 24% of
calories as ethanol resulted in macrovesicular and microvesicular steatosis and mild
fibrotic changes after 18-36 months (Pawlosky et al., 1997; Pawlosky and Salem,
1999).

3.4 Minipigs

Since pigs seem to tolerate ethanol better than most animals and their metabolism
is considered to resemble humans closer than rats, they should be very useful for ALD
studies. Minipigs given acohol in a durry-type low-fat diet consumed 6.0 g
ethanol/kg per day, exhibited somewhat elevated hepatic triglyceride levels but only
minimal histological changes after 8 weeks (Kusewitt et al., 1977). However, when
the fat content was increased (to 35-40% of calories) and the treatment time
prolonged to 12 months, steatonecrosis developed and in some animals interstitial and
perivenous fibrosis was observed (Halsted et al., 1993; Niemela et al., 1995; Niemel§,
1999). Thus the minipig may provide a manageable model to study ALD.
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AIMS OF THE PRESENT STUDY

Although the adverse effects of ethanol on the liver have been well known, the
precise mechanisms of ethanol toxicity are not well understood. The specific aims of
the present work were as follows:

1. The mechanism of enhanced sensitivity to endotoxin after chronic ethanol was
investigated by studying the hepatic expression of the CD14 endotoxin receptor
and of lipopolysaccharide binding protein (LBP).

2. To investigate whether modifying the contents of carbohydrates and
polyunsaturated fatty acids in the oral ethanol liquid diet lead to higher blood
alcohol levels and aggravation of acohol-induced liver lesions, and to find out
whether this model is also applicable to the study of acohol-induced
inflammatory mechanismsin rats.

3. In order to study how chronic endoxemia acts on alcoholic fatty liver, alow-dose
of endotoxin was chronically infused to alcohol-receiving rats, and the Kupffer
cell-derived pro-inflammatory and anti-inflammatory responses were investigated.

4. The evidence for an involvement of Kupffer cells in ALD is at present based
mainly on the intragastric alcohol feeding model, in which destruction of Kupffer
cells by gadolinium chloride attenuates liver damage. The mechanisms of
gadolinium chloride protection were studied here after oral ethanol liquid diet
feeding.

5. Considering the zona and cellular heterogeneity of the pathogenetic events of
al cohol-induced damage, the distribution of CD14 and LBP in the liver acinus was
studied. In addition, the level of oxy-radical producing CY P2E1 induction and its
distribution in the liver acinus were compared with the key enzymes involved in
protection against peroxidation.
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MATERIALS AND METHODS

Animals and ethics

Male Wistar rats were obtained from the breeding colony of the University of
Helsinki. The room temperature in the animal room was 21 + 1°C and relative
humidity 50 + 10%. The lighting rhythm was 12 hours on, 12 hours off with lights on
at 6:00 AM. During the experiments, the rats were individually housed in stainless
steel wire-bottom cages. When sacrificed, the rats were anesthetized with
pentobarbital (50-60 mg/kg intraperitoneally).

The procedures were approved by the Animal Experimentation Committee of the
National Public Health Institute, Helsinki, Finland, and the studies were conducted in
accordance with the principles of the Declaration of Helsinki.

Liquid diet administration

For chronic administration of ethanol, rats were pair-fed a nutritionally adequate
liquid diet. In study I, the “Lieber-DeCarli” diet (NC diet) was used, containing 18 %
(Joules) protein, 35 % fat, and 47 % carbohydrate (controls); or 11 % carbohydrates
and 36 % ethanol (ethanol-fed). For studies 11-1V, this diet was modified by reducing
the content of carbohydrate to 5.5% and increasing the fat content correspondingly to
44%, by addition of an equicaloric amount of corn oil (LC diet). For technical reasons
the protein content of the latter diet was slightly lower (16%). A diet containing 16 %
protein is nutritionally adequate according to feeding regimes for the laboratory rat
(National Research Council, 1978). Casein, vitamins, and minerals were added to
match the composition of the NC diet. In addition, 0.4 % carboxymethylcellulose
(CMC) was added as a stabilizer to increase viscosity.

Table 2. Basic composition of the normal-carbohydrate (NC = Lieber-DeCarli) and low-
carbohydrate (LC) diets. Caloric contributions (%) of protein, fat, carbohydrate and ethanal.

Diet Protein | Fat | Carbo- Ethanol
hydrate

NC control 18 35 | 47 0

NC ethanol 18 3B (11 36

L C control 16 44* | 40 0

LC ethanol 16 44* | 55 345

*Additional fat (corn oil) was added to the NC diet (consisting of olive, safflower, and
corn ail).

Chronic low-dose endotoxin treatment

In study 11, two weeks after the beginning of 5% ethanol liquid-diet treatment,
some rats also were infused with endotoxin via osmotic minipumps for an four
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additional weeks by a modification of the protocol of Fish and Spitzer (1984). Shortly,
the surgery to implant minipump was performed under halothane anesthesia An
osmotic pump (Alzet 2ML4, Alza Corp., Palo Alto, CA) dosed with endotoxin to
deliver 0.1 mg/kg/day (based on the pre-surgery body weight) was implanted
subcutaneously on the back of the rats and connected to the right jugular vein. A 3cm
long PE-10 tube (Clay Adams, Parsippany, NJ) was connected to a 22 cm PE-60 tube,
which was filled with pyrogen-free saline to provide a 36h post-surgical endotoxin-
free recovery. Control rats had a minipump with saline.

Acute endotoxin treatments

In study I, the acute endotoxin treatment rats received an intraperitoneal injection
(3mg/kg) 29 and 5 hours before Kupffer cell isolation.

In study I11, the control rats (ATx) were treated with an intraperitoneal injection of
asmall dose of endotoxin (0.5 mg/kg) 4 hours before sacrifice.

Gadolinium chloride treatment

To cause inactivation of Kupffer cells, gadolinium chloride (GdCl3) was injected
(10 mg/kg in acidic saline) into the tail vein every third day.

Compounds used in the studies

Compounds from the following sources were used: Percoll was obtained from
Pharmacia Biotech (Uppsala, Sweden); Collagenase type V, endotoxin (Samonella
abortus equi), gadolinium chloride hexahydrate and casein (technical grade) were
from Sigma Chemical Co (Saint Louis, MO, USA); mouse anti-rat ED2 and ED9
monoclonal antibodies were from Serotec (Oxford, U.K.); streptavidin-coupled
fluorescein was from Boehringer (Mannheim, Germany); liquid diets from Purina
Mills (Richmond, IN, USA); CMC was from Metsa Speciaty Chemicals Oy,
Aanekoski, Finland; pentobarbital (Mebunat®) from Orion-Farmos (Turku, Finland);
and digitonin from ICN Chemicals (Cleveland, OH, USA).

Histopathology

After sacrificing the animals, a piece of the liver was fixed in 10% neutral buffered
Formalin. Following fixation, the samples were embedded in paraffin and processed
routinely for histopathological examination. Light microscopy sections stained with
hematoxylin/eosin were graded blindly for the degree of fatty change and foca
inflammation, following the protocol by Nanji et al. (1989). Ten low-power fields
were examined per liver. The severity of steatosis was assessed as follows: 1+ =
<25% of cells containing fat, 2+ = 26-50%, 3+ = 51-75%, 4+ = >75%. Steatosis was
graded from 0-4, with O depicting no fat present and 4 depicting that >75% of cells
contain fat. Focal inflammation was graded as 1+ if there was one focus per low
power field or 2+ if there were two or more foci per field. For study 111, the number of
neutrophil polymorph infiltrates was determined by counting infiltrating cells in 10
high power fields (x400) and is expressed as neutrophils per 100 hepatocytes. The
liver sections were aso stained with van Gieson for the evaluation of fibrosis.
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Isolation of Kupffer cells

The liver was perfused in situ through the portal vein with calcium-free and
magnesium-free Hanks balanced salt solution (HBSS) followed by norma HBSS
supplemented with collagenase (50 mg/100 ml, Sigma) for 8-10 min (I). The
papilliform lobe was ligated before collagenase, and samples were frozen in liquid
nitrogen for protein analysis and RNA isolation or transferred into buffered formalin
for histological examination. After redispensing the liver in cold PBS, removing the
capsule and gentle shaking, the cell durry was filtered to remove debris and then
centrifuged twice for 3 min. at 50 x g. Nonparenchymal cells were prepared from the
first two supernatants by isopycnic centrifugation in Percoll as described in detail by
Smedsrad and Pertoft (1985). Kupffer cells were isolated by selective adherence to
glass cover dips and either frozen for immunofluorescense or removed, centrifuged
and collected in aiquots for Western blot and protein determinations. Kupffer cells
were identified by phase-contrast microscopy and their purity (> 90 %) controlled by
endogeneous peroxidase staining using a Zymed (San Francisco, USA) peroxidase
staining kit.

Collection of liver samples and preparation of periportal and
perivenous cell lysates

The liver was perfused in situ with saline through the portal vein for 1-2 min, the
papilliform lobe ligated and removed, and liver samples collected in buffered formalin
solution or frozen in liquid nitrogen and stored at -70°C (11, 111).

Periportal and perivenous cell lysates (1V) were obtained by a modified (Saarinen
et al., 1993) dua digitonin pulsing method (Quistorff and Grunnet, 1987). Briefly,
periportal cells were lysed by infusion of 6.7 ml/kg b.wt. of 3.5 mM digitonin via the
portal vein and the lysate collected by immediate retrograde flushing. Perivenous cell
lysates were obtained by infusing 10 ml/kg b.wt. digitonin solution via the upper vena
cava followed by antegrade flushing. The length (penetration depth) of the digitonin
pulse was determined empirically to lyse approximately one-fourth to one-third of the
cells along the plate in either the proximal or distal part of the sinusoid. The zondl
origin of the cell lysates was controlled by assaying the periportal marker enzyme,
alanine aminotransferase (ALT, EC 2.6.1.2.) asin (Lindros and Penttil&, 1985).

| mmunoblotting

For analysis of CD14 protein in isolated Kupffer cells (1), sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) wasrunin 8.7 % gels. Proteins were
electroblotted on nitrocellulose filters and blocked using the TROPIX (Bedford, USA)
Western Light® protocol and probed with 1:100 dilution of mouse anti-rat ED9
monoclonal antibody (Serotec, Oxford, U.K) specific for CD14 (Tracy and Fox,
1995). The filters were incubated with chemiluminescence substrate (TROPIX) and
exposed to Kodak (New York, USA) X-ray OMAT film.

For analysis of CYP2E1l protein (1V), 255 ug protein from each sample
supernatant was subjected to 10% SDS-PAGE on a Bio-Rad Mini Protein |1 apparatus
using published methods (Laemmli, 1970). Separated proteins were blotted onto nitro-
cellulose membranes (Towbin et al., 1979) and probed for CYP2E1 as previously
reported (Badger et al., 1993b). Immunoreactive bands were visualized by enhanced
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chemiluminescence according to manufacturer’s specifications (Amersham, Little
Chalfont, Buckinghamshire, England). The amount of CYP2E1l apoprotein was
quantified by a personal densitometer (Molecular Dynamics, USA) and expressed as
relative amount of arbitrary units.

I mmunochemistry

In study I, isolated Kupffer cells adhering to glass cover dips were treated with 7
% sucrose for 30 min and frozen at - 80° C. For staining, cell preparations were air-
dried for 30 min at room temperature, washed for 10 min with absolute acetone and
then washed with PBS . The cell preparations were then incubated with the ED9
antibody, diluted 1:100 in 0.5 % bovine serum albumin, at + 4 °C for 20 h and washed
with PBS. For detection, an avidin-biotin complex immunohistochemistry kit (Zymed,
San Francisco, USA) followed by streptavidin-coupled fluorescein was used
according to manufacturer’s instructions.  After mounting, the sections were
coverslipped and examined with a fluorescence microscope Olympus BH-2, equipped
with a BH2-RFL-T3 burner. For control staining, PBS was used instead of ED9
antibody.

For study IV, frozen liver sections (5 um) were air-dried at room temperature for
30 minutes and then fixed in cold acetone for 10 minutes. Endogenous peroxidase
activity was blocked by treating the sections for 10 min in methanol containing 0.3%
hydrogen peroxide. Rehydrated sections were incubated overnight at +4°C with the
Kupffer cell specific ED2 (Dijkstra et al., 1985) monoclonal antibody. Visualization
was carried out using a Histostain™ SP immunohistochemistry kit (Zymed, San
Francisco, CA, USA).

Enzyme assays

The catalytic activity of p-nitrophenol hydroxylase (1V), which reflects CYP2EL
enzyme activity, was estimated from liver microsomes by measuring the
hydroxylation of p-nitrophenol using 0.2 mg microsomal protein (Koop, 1986).

Glutathione transferase (GST) activity (IV) was assayed as conjugation of
glutathione with 1-chloro-2,4-dinitrobenzene (CDNB) at 25°C in phosphate buffer.
Selenium-dependent glutathione peroxidase (Se-GPx) activity (IV) was measured
with tertiary butyl hydroperoxide (BUOOH) by the glutathione reductase-coupled
system at 37°C in phosphate buffer, pH 7.0). The final glutathione concentration was
2.5 mM. Serum alanine aminotransferase (ALT, EC 2.6.1.2.) activities (l1, I1) were
determined using a commercia kit (Boehringer, GMBH, Mannheim, Germany).

RT-PCR

A semi-quantitative RT-PCR was used to estimate the levels of CD14, LBP,
CYP2EL1, and B-Actin mRNA in liver samples (I, III, IV). For these studies, total
RNA was isolated from whole liver or cell lysate samples using commercially
available RNA isolation Kits according to the instructions given by the manufacturers.
The integrity of isolated RNA and the determination of the RNA concentration (A s0)
were vaidated by RNA electrophoresis in formaldehyde denatured agarose gel.
cDNA was produced from identical amounts of total RNA with Promega' s (Madison,
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WI, USA) Reverse Transcription system according to the manufacturer’s instructions.
Control experiments were performed to assure that the PCR amplification reaction
was linear with respect to the amount of cDNA and to the number of cycles used and
that the PCR conditions (annealing temperature and time, Mg2+, primers) were
optimal. The primer sequences were chosen from the coding region of a published rat
MRNA sequences. Conditions, reagents, and oligonucleotide primer sequences are
given in each study (I, Il1, V). The size of the PCR product was analyzed by agarose
gel electrophoresis in 4% NuSieve GTG (FMC BioProducts, Rockland, ME, USA)
followed by ethidium bromide staining. Relative quantification of the products was
done by anion exchange HPLC (Katz and Dong, 1990). All compared samples were
run in the same series of cDNA synthesis and PCR. The interseries variation was
reduced by normalizing the relative CD14 mRNA amplification of each sample to that
obtained with R-actin primers (1). Normalization to Z-actin mRNA was not used in
studies 11l and 1V because low-carbohydrate alcohol liquid diet treatment was found
to increase [-actin mMRNA expression. Instead, the interseries variation in
quantification of CD14 and LBP -PCR products was reduced by normalizing them
mathematically as described before (Lindros et al., 1997). The four independent PCR
runs (CD14, LBP, CYP2E1 and 3-actin) were used to normalize the data.

A modified competitive PCR was used to quantify mRNA expression of cytokines
TNF-a, IL-1pB, IL-4, IL-10, and TGF-B (III, IV). In the technique, PCR mimics were
constructed with composite primers (45-62 bp) containing 2 target gene primer
sequences instead of one, so that the same PCR product (mimic) can be applied for 2
different competitive PCRs when the appropriate PCR primers were used. The mimics
are nonhomologous DNA fragments more than 100 bp longer or shorter than the
target DNA and served as internal standards in the competitive PCR. The optimal
conditions for the competitive PCR were selected from the pilot tests. To monitor the
efficiency of competitive PCR and to produce standard curves for calculation of the
relative amount of mMRNA, threefold seria dilutions of mimic were coamplified with a
constant amount of cDNA mixtures from control and treated samples, and the
appropriate amounts of different mimics that gave equal intensities of target and
mimic bands were determined respectively when the ratio of target to mimic was 1:1.
The PCR products were electrophoresed through an agarose gel with ethidium
bromide. Band intensity data were converted to ratios of target to mimic, then
normalized by the ratio of house keeping gene cyclophilin, which served as a control
for the quantity of RNA sample variations and the efficiency of reverse transcription.

Other methods

For determination of endotoxin, blood was aseptically collected by heart puncture
into pyrogen-free blood collection tubes containing heparin (Endo Tube ET,
Chromogenix, Molndal, Sweden). These were immediately placed on ice in order to
minimize the rapid inactivation of LPS which occurs in whole blood at 37 °C
(Steverink et al., 1994; Rivera and Thurman, 1998). Platelet-rich plasma (PRP) was
obtained by centrifugation at 180 g for 10 min in a refrigerated centrifuge. The PRP
was then removed into pyrogen-free storage tubes (N201 Test Tubes, Biowittaker,
Walkersville, Maryland), and stored at -80 °C until assay. To inactivate inhibitors,
plasma was diluted 1:10 in pyrogen-free water (Biowittaker) and heated to
approximately 75 °C in a water bath before assay. Endotoxin levels in the serum
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samples were measured by the Limulus Amebocyte Lysate (LAL) sensitive
chromogenic assay with a detection limit of 0.1 pg/ml (Biowhittaker QCL 1000) and
the microplate (Costar) method using a Multiscan RC microplate reader (Labsystems,
Helsinki, Finland).

Liver microsomes were prepared by homogenizing liver tissue in 10mM
sodium/potassium phosphate buffer, pH 7.4, containing 1.14% KCI. The microsomal
pellet obtained after ultracentrifugation at 105.000 g was washed once and
resuspended in 50 mM potassium phosphate buffer, pH 7.4.

Blood ethanol levels (I-1V) were determined by head space gas chromatography as
described before (Hu et al., 1995). Serum GSTo activity (IV) was measured with a
commercial ELISA kit (HEPKIT™, Biotrin, Dublin, Ireland) according to the
instructions. Protein was determined fluorometrically (Bohlen et al., 1973).

Statistics

The groups were statistically compared by one-way or two-way analyses of
variance (ANOVA; with repeated measures where appropriate) followed by the
Student’s t-test or the Mann-Whitney test. Student’s t-test was used when only two
groups were compared. Correlations were made using Pearson’s or Spearman’s
correlation coefficients where appropriate.
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RESULTS

Ethanol liquid diet model

In this work, ethanol was administered together with a nutritionally adequate liquid
diet. Consumption of the ethanol liquid diet intake had no apparent effect on the
health status of the animals. For example, a steady increase in the body weight was
observed in al groups during all studies. The mean daily ethanol intakes of the
ethanol-treated rats were mostly between 10 - 14 g/kg b.w., and the rats had
consistently elevated blood ethanol levels. The mean blood ethanol levels were
generaly 150 - 200 mg/dl.

Histopathological evaluation of liver specimens from rats fed the regular (NC)
ethanol diet, containing 11% of calories as carbohydrates, confirmed earlier
observations (Lieber at al., 1965; Rao and Larkin, 1984; Lieber and DeCarli, 1989)
that rats receiving ethanol on this regimen developed only steatosis, which was mainly
periportal (Fig. 3ainl).

However, the histopathological picture observed in livers of rats given ethanol in
the low-carbohydrate diet was markedly different. Panlobular
microvesicular/macrovesicular steatosis of pronounced severity was present in most
of the ethanol-treated rats. Occasionally, foci of inflammation were observed (Fig. 3b
in 11). The predominant inflammatory cell type was a mononuclear cell. Neutrophils
were also occasionally found. Ethanol treatment increased serum liver enzyme alanine
aminotransferase (ALT) —two- to three-fold in male rats. No parenchymal fibrosis was
found in any of the samples. The overall pathological score was significantly higher
(p < 0.01) in livers of rats on the LC diet than in rats on the NC diet. Furthermore,
animals on ethanol-LC diet were found to exhibit a significantly higher liver/body
weight ratio than the corresponding controls.

CD14 and LBP expression (I1, I11)

The CD14 protein is normally expressed at a very low level in the liver, on the
membrane of Kupffer cells and infiltrating monocytes/macrophages. Consequently,
isolation of Kupffer cells was necessary to allow immunological detection of CD14.
In Kupffer cell preparations from untreated animals, weak staining of immunoreactive
protein with the expected molecular weight (55 kD) was detected. In contrast, Kupffer
cell preparations from rats treated 2 weeks with ethanol liquid diet were more
intensively stained. The preparation from rats treated acutely with endotoxin showed
the strongest staining. The difference in the immunocytofluorescense staining pattern
between Kupffer cells from untreated and ethanol-treated animals was also observed.
The controls showed only weak fluorescence. Cell preparations from ethanol-treated
animals, however, regularly exhibited marked plasma membrane fluorescence. RT-
PCR analysis revealed that ethanol feeding significantly (p< 0.01) increased the
hepatic mMRNA expression of CD14 to threefold, suggesting transcriptional
activation. Chronic ethanol administration also significantly increased (approx. 2—
fold) the expression of lipopolysaccharide binding protein (LBP) mRNA (111, 1V).



Chronic endotoxemia (I11)

Chronic endotoxin infusion had no apparent effect on the health status of the
animals. Preliminary experiments, using endotoxin doses between 0.05 - 3.0 mg/kg
per day, were performed to find a dose that caused no undesirable health effects and
only minimal liver injury. The endotoxin dose chosen (0.1 mg/kg/d) resulted in a 50-
to 100-fold elevation of blood endotoxin over control levels in the end of the study.
The blood endotoxin levels in control-endotoxin rats were 388.4 + 97.5 pg/ml and in
ethanol-endotoxin rats 512.8 + 80.4 pg/ml. This range of blood endotoxin can be
considered as a moderately severe endotoxemia. Ethanol alone also caused a small,
but significant (p < .01) elevation in blood endotoxin when compared to control
animals (9.3 + 1.5 pg/ml and 3.1 + 1.0 pg/ml, respectively).

Histopathological analysis of the livers revealed that endotoxin treatment alone had
no effect on steatosis, mononuclear inflammation, or necrosis. However, occasionally
damage to sinusoidal cell lines was observed, resulting in the accumulation of blood
cells, especially in the midzona region. A significant increase in the frequency of
polymorphonuclear cells after the chronic endotoxin treatment was also observed.
This was not, however, associated with hepatocyte necrosis. Ethanol treatment with or
without chronic endotoxin resulted in a 2- to 3-fold increase in serum ALT. Therefore,
in contrast to studies in which endotoxin is given as a bolus to chronically alcohol-fed
animals, liver damage was not clearly potentiated in endotoxin-ethanol treated
animals. These results suggest a development of tolerance to endotoxin.

Since macrophages are known to be involved in the generation of endotoxin
tolerance (Freudenberg and Galanos, 1988), an examination was made as to whether
CD14-regulated signaling pathways are down-regulated more during chronic
endotoxemia than following an acute challenge. The effect of chronic endotoxin on
the expression of the mRNAs for CD14 endotoxin receptor and lipopolysaccharide
binding protein (LBP) was investigated by HPLC from the amplified products
obtained by RT-PCR. There was no significant increase of CD14 or LBP mRNA after
chronic endotoxin treatment (Fig. 4 in Il1). This result contrasted to that seen after
acute challenge. Four hours after a low acute dose of endotoxin (0.5 mg/kg), the
amount of CD14 mRNA was five-fold higher (p < 0.001) and that of LBP mRNA
nine-fold higher (p < 0.001) than in controls.

Changes in the hepatic expression of cytokine mRNAs were quantified using
competitive RT-PCR. Four weeks of endotoxin treatment resulted in a markedly
elevated expression of all the cytokines investigated (Fig. 3 in Il1). Both pro-
inflammatory cytokines were increased about 7-fold (p< .01 for both IL-1p, and TNF-
a) after endotoxin alone and 9- and 11-fold, respectively, after combined ethanol-
endotoxin treatment. Ethanol alone did not significantly increase these cytokines or
the expression of the anti-inflammatory cytokines IL-4 and IL-10. However, after
chronic endotoxin, a 28-fold increase of IL-10 mMRNA was found (p < .05) and IL-4
increased —3-fold (p < .05); additional ethanol treatment did not potentiate these
changes. Endotoxin treatment also increased the expression of TGF-; much more
(about 8-fold; p < .01) than ethanol did (about 2-fold; p < .05). Additiona ethanol
treatment attenuated the endotoxin-induced increase to about 3-fold (p=.05).

Effect of gadolinium chloride (1V)

Administration of GdCl; every third day to rats has previously been shown to
efficiently inactivate the liver macrophage population (Hardonk et al.,1992). This was
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confirmed in the present study by staining liver cryostat sections with a monoclonal
antibody against resident hepatic macrophages ED2 (Heuff et al., 1993). In rats
treated with gadolinium, very few cells stained positively for ED2. In contrast, in
livers from untreated rats, strong positive staining was seen. A lobular pattern of ED2-
staining was apparent. The cells were larger and more frequent around the portal triad,
while around the perivenous regions cells appeared fewer and smaller.

Gadolinium treatment significantly reduced the level of ethanol-induced steatosis.
However, additiona treatment with gadolinium did not alleviate the ethanol-induced
increase in the frequency of inflammatory foci. Neither was the GST-o activity,
indicating liver cell damage, different in rats treated with gadolinium chloride.

As shown in numerous earlier studies, ethanol treatment caused marked induction
of CYP2E1L. The induction of CY P2E1 protein, as estimated by Western blot analysis,
was 8.4-fold and that of catalytic activity, as determined by p-nitrophenol (pNP)
hydroxylase activity from microsomes, was 5.1-fold (Fig.4 in 1V). Additiona
treatment with GdCl3 significantly decreased the CYP2E1 induction, an effect seen
both at the protein level (to 6.3-fold, p < 0.05) and as catalytic activity (to 3.3-fold, p
< 0.05). Gadolinium treatment alone had no effect on CYP2EL, neither at the protein
nor the activity level. Protein and activity data correlated strongly (r = 0.85, p <
0.001). Of importance, within the two ethanol-treated groups of animals, the CY P2E1
activity correlated to steatosis (Fig. 5 in V). The correlation coefficient by
Spearman’s analysiswas 0.7 (p < 0.05). The correlation was significant also within the
ethanol-gadolinium group (r = 0.6, p < 0.05). Consistent with the effects on activity,
the protein expression of CY P2E1 was significantly reduced by GdCls.

Considering the zonal and cellular heterogeneity of the liver macrophage
population (Laskin, 1997), the possibility that GdCl, could act zone-specifically was

evaluated by comparing the mRNA expression of CD14 and LBP in perivenous and
periportal cell lysates. The efficiency of the digitonin-pulse technique to obtain zone
selective lysates was verified by measuring the activity of the periportal marker
alanine aminotransferase (ALT) in the eluates. The activity of ALT in periportal
eluates was 7-14 times higher than in the perivenous samples, and this distribution
was seen in al four groups (results not shown). RT-PCR analysis revealed that the
expression of CD14 mRNA was significantly (p < 0.05) higher in the perivenous
eluates than the periportal samples, regardless of treatment (Fig. 6 in 1V). The
perivenous/periportal ratio varied between 1.9 to 2.9. The ethanol-induced increase in
hepatic CD14 mRNA was observed in eluates, both in periportal and perivenous
samples, indicating that the ethanol effect was panlobular. Interestingly, although the
ED2-staining demonstrated efficient inactivation of Kupffer cells by GdCls, the
expression of CD14 or its zonation was unaffected.

In contrast to CD14 mRNA, the expression of LBP mRNA exhibited no zonation
(Fig. 6 in 1V). Ethanol treatment significantly increased LBP mRNA (p < 0.05), as
seen both by analysis of liver samples and eluates. Additional gadolinium treatment
led to a further increase in LBP expression (p < 0.05 vs. ethanol). Analysis of the
relative effect of ethanol in the periporta and perivenous eluates suggested that
ethanol affected the perivenous area more. Thus while ethanol increased LBP mRNA
in the periportal area by 3.9-fold (E vs. C) and 3.3-fold (EG vs. CG), the increase in
the perivenous area was 6.8-fold (E vs. C) and 9.4-fold (EG vs. CG (p < 0.05).

The hepatic mRNA expressions of the pro-inflammatory cytokines TNF-a and
IL-1B were quantified by competitive RT-PCR. Although there was a tendency for
ethanol to increase the expression of both TNF-a (2.5-fold) and IL-1B (1.5-fold), and
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a tendency for GdCl; to reduce this effect (to 1.9-fold for TNF-a and to 0.9-fold for
IL-1P), these effects were not statistically significant (Table 1 in IV).

To study the possible effect of GdCl3; on the defense capacity of the liver against
ethanol/CY P2E1-induced oxidative stress and its zonation, the catalytic activities of
the two major GSH-associated enzymes, GSH transferase (GST) and the selenium-
dependent GSH peroxidase (Se-GPx), were determined. In agreement with previous
observations (Ishii et al., 1997; Rouach et al., 1997), chronic ethanol treatment
increased the GST activity (which is higher in the perivenous region) while the
activity of Se-GPx (which is higher in the periportal region) was reduced (Table 2 in
IV). However, ethanol affected these activities in both acinar areas to approximately
the same extent. Furthermore, GdCl; treatment had no significant effect on either the
total activity or on the zonated distribution of these enzymes.
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DISCUSSION

Low-carbohydrate ethanol liquid diet model

The chronic administration to rats of an ethanol-containing liquid diet low in
carbohydrates (5.5% of calories) but comparably high in unsaturated fatty acids
(mainly corn ail) results in distinctly different liver changes than those observed in
numerous earlier studies using an alcohol diet with a normal content of carbohydrates.
After six weeks, male rats on this liquid diet regimen developed panlobular
microvesicular/macrovesicular steatosis, focal inflammation, and a several-fold
elevation of serum liver enzymes (11-1V). This suggests that either the carbohydrate
content by itself or the carbohydrate/fat ratio is a crucial factor in the development of
damage. In the modified formula, the carbohydrate/fat ratio was 1:8, as compared to
1:3in the Lieber-DeCarli diet (Lieber and DeCarli, 1989). It is well documented that
ethanol-induced fatty infiltration is reduced when the dietary carbohydrate content is
increased (Stanko et al., 1978; Yonekura et al., 1993). Thus inhibition of the
development of steatosis might be a crucia mechanism in the protection from more
advanced injury (Day and James, 1998). A carbohydrate free diet does not by itself
produce any lesions (Lieber et al., 1965), indicating that a relative lack of
carbohydrates only becomes important in combination with chronic ethanol feeding.
The dose-response relationship for ethanol in the development of liver damage,
however, remains to be determined.

These results also support the pathogenic role of persistently elevated blood
ethanol levels. The rats on the low carbohydrate ethanol diet had significantly higher
blood ethanol levels than rats on the normal carbohydrate ethanol diet. The blood
ethanol levels approached those reported in the intragastric ethanol feeding model (up
to 25 — 3 %o). In addition, these levels were continuously elevated, while in the
Lieber-DeCarli liquid diet model the blood ethanol levels are known to fluctuate with
the circadian rhythm between 0 — 1.5 %o (Lieber and DeCarli, 1989). Ethanol levels
also fluctuate in the intragastric feeding model, but not diurnally. Instead, they cycle
with a characteristic 4-5 day frequency from almost zero to 3-4 %o (Tsukamoto et al.,
1985c; Badger et al., 1993). Elevated blood ethanol levels may be explained by the
finding suggesting that a low carbohydrate content in the diet may reduce the rate of
ethanol metabolism (Rao et al., 1987). In fact, when ethanol is administered together
with carbohydrates, lowered blood ethanol levels have been observed, possibly as a
consequence of accelerated hepatic metabolism (Sankaran et al., 1991; Yonekura et
al., 1993).

This protocol of oral administration of a low-carbohydrate liquid ethanol diet may
provide an affordable alternative to the technically demanding intragastric ethanol
feeding model for experimental studies of alcoholic liver disease. In addition to the
high blood ethanol levels, the daily intake of the ethanol diet also was high: on the
average 11-13 g/kg, similar to the ethanol exposure achieved in intragastric feeding
model.

Another factor influencing the ethanol effects appears to be gender. Later studies
with this oral ethanol feeding model have showed that the pathology is even more
aggravated in female rats. The incidence of spotty/focal necrosis was frequent, and
serum liver enzymes (ALT) were increased 7 —fold by ethanol in a study with female
rats (Jarveldinen et al., 2000).
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Extrapolation of rodent studies to the human disease process should, of course, be
done cautiously. However, an adequate daily supply of total carbohydrates may be an
important factor when treating ALD patients. This might be of importance aso during
alcohol consumption. Indeed, individuals drinking acohol with meals had much
lower risk of developing alcoholic liver disease than individuals consuming alcohol
without food (Bellentani et al., 1997).

CD14 endotoxin receptor and LBP

Immunocytochemistry and immunoblot analysis of isolated Kupffer cells from
ethanol-treated rats showed an enhanced expression of CD14 protein. This was
associated with a significant increase in the amount of hepatic CD14 mRNA (I, I11).
This is in line with earlier observations that the upregulation of CD14 is
transcriptionally regulated (Matsuura et al., 1994; Su et al., 1998). Ethanol treatment
also increased the amount of lipopolysaccharide binding protein (LBP) mRNA
expression in liver samples (111, 1V). Since it is known that the increase in CD14 and
LBP in the liver is accompanied by an enhanced response to endotoxin (Martin et al.,
1994; Treon et al., 1994; Louis et al., 1998), these two complementary responses
might work together in the increased sengitivity to the hepatotoxic effects of
endotoxin and the induction of inflammatory responses in the liver. Considering the
important role of endotoxin in the etiology of ALD, priming of Kupffer cells with
endotoxin by a CD14-dependent mechanisms might be a novel mechanism by which
alcohol and endotoxins interact in the initiation of alcoholic liver disease. A recent
genetic study brings further support to the significance of CD14 in pathogenesis of
ALD. Alcohol consumers with a polymorphic C>T (-159) form in the promoter
region of the CD14 gene that confers to the increased CD14 expression had a much
higher prevalence of acoholic cirrhosis (Jarveldnen et al., 2000b). Observation of a
high expression of CD14 mRNA in the perivenous region (IV) suggests that the
higher CD14-regulated inflammatory activity in the perivenous area may contribute to
the induction of liver injury specifically in that zone.

The factors that regulate the induction and expression of CD14 in the liver are not
well understood. Endotoxin is known to upregulate Kupffer cell CD14 mRNA
expression (Matsuura et al., 1994). Recent study showed that upregulation of the
CD14 by alcohol is aso mediated by endotoxin, since intestinal sterilization with
antibiotics (polymyxin B and neomycin) prevented the effect (Enomoto et al., 1998).
The evidence for a cytokine-mediated increase in CD14 expression is equivocal.
Some cytokines, i.e. IL-4 and IFN-y, have even been found to downregulate CD14
(Landmann et al., 1990). It remains to be clearly delineated if the increase in CD14
expression is a result of the invasion of cells into the liver or the increase in CD14
expression by the Kupffer cells that were aready present in the liver. Chronic ethanol
is reported to increase the number of Kupffer cells, an effect that by itself would
increase liver CD14 (Shiratori et al., 1989).

The hepatic CD14 mRNA expression is most likely derived from Kupffer cells,
since severa studies indicate that its expression in the liver, both at the protein and
MRNA levdl, isrestricted to Kupffer cells (Matsuura et al., 1994; Tomita et al., 1994;
Su et al., 1998; Kitchens, 2000). Staining of multiple tissues, including liver, tonsil,
lymph node, spleen, thymus, skin, pancreas, lung, kidney, colon, and cerebellum,
showed that in addition to tissue macrophages, only interstitial cells of skin and lung
stained for CD14 (Bordessoule et al., 1993). In a study based upon rats acutely treated



with a massive (10 mg/kg) endotoxin dose, hepatocytes were found to express CD14
MRNA (Liu et al., 1998), and this was suggested to be a source for soluble CD14
during endotoxemia. However, hepatocytes do not seem to express CD14 under more
physiological conditions. Further investigations are needed in order to exclude the
possibility that the hepatocyte CD14 expression in that study was due to passive
absorption of CD14 or due to contaminating Kupffer cells.

Chronic infusion of low-dose endotoxin

Previous studies, based upon both animal experiments and clinical observations,
have suggested aggravation of ALD by chronically elevated levels of circulating
endotoxins, which act as a continued stimulus for pro-inflammatory cytokine
production. For example, if gut is sterilized by oral antibiotic treatment, experimental
alcoholic liver injury is alleviated (Adachi et al., 1995). Severa studies have
demonstrated that acute endotoxin in combination with chronic acohol administration
augments the development of ALD (Bhagwandeen et al., 1987; Tanaka et al., 1992;
Pennington et al., 1997). However, the effects of combined long-term exposure to
endotoxin and ethanol on liver pathology and gene expression has not been studied
before.

In this study endotoxin was given at a rate that caused moderate endotoxemia, in
an attempt to mimic the continuous endotoxemia in acoholics. The dose by itself
caused only minimal, yet observable, damage. The changes, consisting of damage to
the endothelial cell lining and accumulation of blood cells, are in agreement with
earlier observations (Nayaar et al., 1989). The levels of circulating endotoxin that
were needed (200-500 pg/ml), were 20-50 times higher than those found in ethanol-
treated animals (mean 9.3 pg/ml) and were also much higher than in those studies
using the intragastric ethanol feeding model (30-70 pg /ml) (Rivera and Thurman,
1998). However, this dose of endotoxin did not significantly enhance steatosis or
focal inflammation/necrosis in ethanol-fed animals.

The failure of this model to potentiate the damage suggests that marked tolerance
may develop to the continuous presence of relatively high levels of circulating
endotoxin. Attenuation of the inflammatory response and of immunological functions
has indeed been observed after prolonged endotoxin administration (Friedman et al.,
1992). The continuous presence of LPS may lead to adaptation at the level of LPS
signa transduction in Kupffer cells. Indeed, in the present study, while acute
endotoxin markedly enhanced the expression of both LBP and CD14 mRNA, no such
increase was seen after chronic endotoxin administration, suggesting that Kupffer
cells from chronically endotoxin-treated rats were apparently in the low-
responsiveness state. Similarly, in LPS tolerant monocytes, CD14 expression is
unchanged (Ziegler-Heitbrock, 1995). Changes in Kupffer cell CD14 expression seem
to be reflected in the pro-inflammatory cytokine release (Enomoto et al., 1998).

Endotoxin by itself caused occasional sinusoidal polymorphic cell infiltration. This
is interesting from the clinical point of view, since neutrophil infiltrates are prominent
in alcoholic hepatitis. However, while in the acute endotoxin/chronic ethanol model
polymorphonuclear neutrophil infiltration is associated with coagulative necrosis, in
this study, after chronic endotoxin challenge, there was no additional injury in the
sites of neutrophils. Therefore, as Kupffer cells, also neutrophils are presumably in a
hyporeactive, non-cytotoxic state. The observations that only activated neutrophils are
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cytotoxic against hepatocytes suggest that events in vivo are preceded by Kupffer cell
activation (Mavier et al., 1988; Schlayer et al., 1988; Liu et al., 1995).

A major goal of this study was to evaluate how the chronic co-administration of
ethanol and endotoxin and the early pathological signs of ALD are reflected in the
cytokine profiles. Hepatic mMRNA expressions of proinflammatory cytokines TNF-a
and IL-1B, both of which are considered to be important mediators in liver injury,
were elevated after chronic endotoxin exposure. However, there was no significant
increase in the enhanced expression of TNF-oo and IL-1f in animals also receiving
ethanol, in contrast to the large increase after acute endotoxin administration to
animals chronically fed alcohol (Pennington et al., 1997). Thus the hepatic cytokine
activation does not necessarily associate with liver damage, as has been suggested by
several authors (Thurman et al., 1998; 1999; McClain et al., 1999).

Enhanced expression of anti-inflammatory cytokines has been observed previously
in endotoxin tolerance. The absence of damage could be related to the high expression
of potent anti-inflammatory cytokine IL-10, suggesting that it is important to consider
the relative expression of both pro-inflammatory and anti-inflammatory cytokines.
However, additional chronic ethanol treatment may disturb the balance between
endotoxin-induced expression of proinflammatory and anti-inflammatory cytokines,
thus promoting the development of damage. In our study this effect was seen with the
anti-inflammatory cytokine TGF-f, which was significantly lower after ethanol-
endotoxin than endotoxin alone.

It has been suggested that continuous endotoxemia leading to an uninterrupted
stimulus for inflammatory cytokine production is more likely than an acute presence
of endotoxin to produce liver damage in conjunction with acohol (Thurman et al.,
1998). The results of the present studies are not consistent with this suggestion:
continuous administration of endotoxin did not produce more damage than acute
administration. Actually, there has been no clinical study showing a correlation
between endotoxin and TNF levels in patients with liver disease, suggesting that TNF
release may be modified by various mechanisms. Furthermore, acoholics with high
plasma endotoxin levels do not necessarily show the severe clinical findings typical of
endotoxemia. The different drinking pattern of the alcoholics may, however, cause
temporal variations in their endotoxin levels, which could modify the development of
tolerance. Endotoxin derived from acute bacterial infections may also potentially play
a important role in the induction of inflammation in fatty livers. The further
characterization of anti-inflammatory cytokines will be important to define the
mechanisms governing the autoregulation of hepatic inflammation and might
hopefully lead to new therapeutic approaches for alcoholic liver disease.

A complete understanding of the mechanism involved in cytokine release and its
action in chronic endotoxemiawill be critically important in the development of better
therapeutic options for patients with ALD in the future. This experimental model of
endotoxin tolerance offers atool for exploring these mechanisms.

Mechanisms of gadolinium chloride protection

Since gadolinium chloride significantly reduced the severity of ethanol-induced
fatty liver, but did not aleviate the inflammatory responses, it seems that the
mechanisms by which GdCl; protects from the injury is primarily antisteatotic. The
counteracting effect of GdCl; on steatosis may nevertheless be a crucial protective
mechanism, since evidence is accumulating that fat accumulation is a less benign
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condition than previoudy thought (Day and James, 1998). Particularly the
microvesicular form of steatosis, also seen in this study, may propagate the
development of a more severe damage (Day and James, 1998).

The persistence of CD14 expression in spite of ED2 depletion indicates that GdCl 3
destroys selected ED2-positive macrophage populations rather than al macrophages
uniformly. In fact, studies on phenotypic aterations on Kupffer cells have shown that
dthough GdCl, downregulates the expression of ED1, ED2, and the Kupffer cell-

specific lectin-binding receptor KCR, the expression of the monocyte-macrophage
specific gene product Pu-1 is unchanged (Hardonk et al., 1992; Rai et al., 1996;
Roland et al., 1999).

Observation of a high expression of CD14 mRNA in the perivenous region fits
with the recent observation that chronic ethanol treatment increases the expression of
cytokines more in the perivenous region (Fang et al., 1998). Large ED2 positive
Kupffer cells, probably those that are involved in phagocytosis and thus are capable of
destroying the gadolinium aggregates, are located mostly in the periportal region
(Hardonk et al., 1992; Laskin, 1997; Ahmad et al., 1999). These were also efficiently
eliminated by gadolinium treatment as shown with the ED2 immunohistochemistry.
The fact that GdCl, treatment did not affect CD14 expression suggests that

gadolinium has little effect on the smaller, round-shaped, CD14-positive, cytokine-
producing Kupffer cells, that are more numerous in the perivenous region (Tomita et
al., 1994; Rai et al., 1996; Rittinger et al., 1996). This could also explain why in this
study GdCl3 had little effect on inflammation. However, the large ED2-expressing
periportal Kupffer cells that are most efficiently eliminated by GdCl, probably secrete

a different pattern of mediators, such as eicosanoids, which affect hepatic
carbohydrate and fat metabolism (Enomoto et al., 2000). It has been recently shown
that while gadolinium increases the proportion of macrophages secreting TNF-o in
vitro, it decreases the Kupffer cells secreting PGE, (Roland et al., 1999). It is
conceivable that the effect of GdCl, on steatosis is mediated by this pathway.

A previous study by Koop et al. (1997), based upon the intragastric ethanol feeding
model for ALD, reported that GdCl; alleviated ALD without affecting CY P2E1. In
contrast, this study showed that both ethanol-induced steatosis and CY P2E1 induction
were attenuated by GdCls. This suggests that protection by GdCl; could be, at |east
partly, due to less CYP2E1l. However, GdCl; has multiple actions, and the
mechanisms of CY P2E1 induction are complex. It is still possible that the association
between CY P2E1 activity and fatty changesis circumstantial.

Although moderate CYP2E1 expression is found in Kupffer cells (Koop et al.,
1991; Koivisto et al., 1996), the contribution of these cells to total liver CYP2E1
expression is most probably too low to explain the reduced CY P2E1 activity produced
by GdCl3. On the other hand, GdCl; treatment has been shown to increase Kupffer
cell expression of TNF-a (Rai et al., 1996), and cytokines are known to reduce most
hepatic P450 forms in vivo (Simpson et al., 1997; Morgan, 1997). In this study,
however, no significant effect on the mRNA expression of the pro-inflammatory
cytokines TNF-a and IL-1B by gadolinium was discerned. Alternatively, since GdCl3
has been shown to reduce total P450 in the liver (Badger et al., 1997), GdCl; could act
by reducing CYPZ2EL directly in hepatocytes. It is intriguing that GdCl; seems to
protect against compounds which have P450-dependent hepatotoxicity, i.e. CCly, but
not against many other hepatotoxic compounds, i.e. CdCl, (Badger et al., 1997).

Data based upon the intragastric ethanol feeding model have indicated that the
Kupffer cells play akey rolein the inflammation produced and even in spotty necrosis
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(Adachi et al., 1994; Koop et al., 1997). It is a characteristic feature of this model that
the blood ethanol levels cycle with an amplitude of up to 5 %.. This may cause an
artificially recurring activation of Kupffer cells (Abril et al., 1997; Enomoto et al.,
1998). In fact, daily administration of one large dose (5 g/kg) of ethanol for two
months was recently reported to result in liver damage resembling that seen after
intragastric ethanol feeding (Enomoto et al., 1999). In the ora low-carbohydrate
liquid diet model used in the present study, the blood ethanol levels are continuously
elevated but fluctuate much less (1.5 — 2.5 %o0), and Kupffer cell activation and their
contribution to the pathogenesis may be less prominent, as suggested from the present
data.

CYP2E1 and hepatic antioxidant defense

Much evidence suggests that alcohol-induced liver injury is associated with
oxidative stress and free radical-mediated tissue damage. The ethanol-metabolizing
P450 enzyme, CYP2EL, is suspected to play a role, since it is strongly induced by
ethanol and possesses a high NADPH-oxidase activity. Indeed, much experimental
evidence support the notion of an involvement of CYP2EL in the pathogenesis of
ALD (Lieber, 1997). Increased production of reactive oxygen species by microsomes
from ethanol-fed rats correlates with the amount of CY P2E1 (Ekstrém and Ingelman-
Sundberg, 1989). Studies obtained using intragastric ethanol feeding model aso
indicate a pathogenic role for CYP2EL in ALD. For example, the extent of CYP2E1
induction correlates between lipid peroxidation or pathology score (Ingelman-
Sundberg et al., 1988; Morimoto et al., 1995; Albano et al., 1996). In addition, two
CYP2E1 inhibitors, diallyl sulfide and phenethyl isothiocyanate, alleviated steatosis,
and also a colocalization of CYP2E1 expression and steatosis within the liver lobulus
has been reported (Morimoto et al., 1995).

Orally administered acohol liquid diet protocols have often been criticized because
the histological changes do not correlate with the biochemical changes (Thurman et
al., 1998). However, in the present study, CY P2E1 activity correlated with the extent
of steatosis observed (1V). Although these findings do not prove causality, they fit the
previous in vivo and in vitro studies suggesting the notion of an oxy-radical mediated
pathogenic role for CY P2EL.

Among the antioxidant enzymes involved in the protection of hepatocytes against
oxidative stress, the selenium-dependent glutathione peroxidase (Se-GPx) plays a key
role, especialy in the detoxification of lipid peroxides (Reinke et al., 1990). The
activities of GSH peroxidase and of the other key antioxidant enzyme, GSH
transferase (GST), were measured from the whole liver samples and from the
periportal and perivenous zone lysates (IV). In agreement with previous findings, the
activity of GST exhibited a perivenous dominance and was increased by ethanol,
while that of GPx was lowered by ethanol and exhibited a periportal dominance (Kera
et al., 1987). The reduction of glutathione peroxidase activity specifically in the
perivenous zone might exacerbate the lesion, since CY P2E1 is expressed and induced
almost exclusively in the perivenous region. A direct interaction between CYP2EL
and GPx is also possible. Ethanol oxidation by CYP2E1 produces 1-hydroxyethyl
radicals, which have been shown to inactivate GPx (Puntarulo et al., 1999). GPx may
also be inactivated by peroxides and oxygen-derived free radicals, presumably by
binding to the active site of the enzyme (Blum and Fridovich, 1985; Pigeolet et al.,
1990; Tabatabaie and Floyd, 1994; Kinter and Roberts, 1996). It is thus tempting to
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speculate that oxygen species derived from ethanol-induced oxidative stress by
CYP2EL are involved in the reduced GPx activity, and that they contribute to cell
damage.
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SUMMARY

. Oral administration of an ethanol liquid ethanol diet with a low carbohydrate
content leads to persistently high blood ethanol levels, elevation of serum liver
enzymes, and pathological changes beyond fatty liver. This procedure may offer a
new, convenient model for studying the pathogenic mechanisms of alcohol-
induced liver damage.

. The increase in hepatic expression of CD14 and LBP should sensitize Kupffer
cells to the hepatotoxic effect of endotoxin. We propose that this is a novel
mechanism by which alcohol and endotoxins interact in the initiation of alcoholic
liver disease.

. Chronic exposure to endotoxin and ethanol lead to a marked attenuation of the
inflammatory responses. Little hepatic damage was observed in spite of enhanced
expression of pro-inflammatory cytokines. It is conceivable that a high expression
counterbalancing anti-inflammatory cytokines and low-expression of CD14
endotoxin receptor and LBP may help to protect against injury along with the
development of tolerance to endotoxin. This study suggests that chronically
elevated endotoxin alone may not be a primary or determinant factor in acohol
hepatotoxicity.

. Gadolinium chloride alleviates ALD primarily by decreasing ethanol-induced
steatosis. Furthermore, the correlation of this effect to CYP2E1 induction lends
support to the proposed pathogenic role for CYP2EL. In the present oral feeding
model, attenuation of the Kupffer cell mediated pro-inflammatory effect does not
seem to be directly involved, since GdCl; had no effect on ethanol-induced early
inflammatory responses. The finding that the endotoxin receptor CD14 exhibited a
marked perivenous expression and that GdCl; treatment did not affect its
expression suggests that GdCl; inactivates selectively the periportally-located
phagocytosis-mediating ED-2 expressing Kupffer cells while the perivenous
cytokine-mediating CD14 expressing macrophages are | ess affected.
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