

productivity leap

HYKS-INSTITUUTTI

tieto EVRY

Kimmo Porkka

Ylilääkäri, kehityspäällikkö HUS Syöpäkeskus, hematologian klinikka ja HUS-tietohallinto

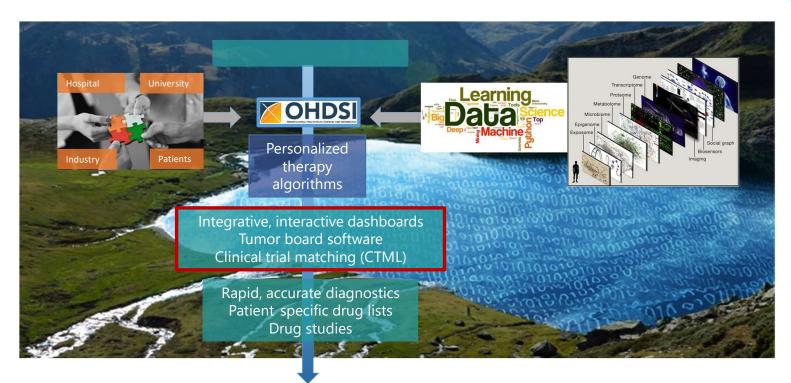
Professori Hematology Research Unit Helsinki Helsingin yliopisto

Use case: eCare for Me project

- Part of the CleverHealth ecosystem (Helsinki University Hospital HUS)
 - Data-driven solutions to improve early diagnostics, automated treatment selection and homebased care
- A public-private partnership model
- Main funding from Business Finland
 - Finnish government organization for innovation funding and trade, travel and investment promotion
- Several SMEs, medium- and large-size companies as partners

Block 2: automated diagnostics, treatment selection (POC: acute leukemia)

PI: prof. Kimmo Porkka



3

Disease remission, cure

General aims

- Provide robust, reliable, reproducible evidence for research and decision-making using extended, harmonized RWD
- Implement precision medicine for cancer
 - Deep tumor profiling: genomics, transcriptomics
 - Novel data sources: image analysis, epigenetics (early diagnosis), functional assays (e.g. ex vivo drug testing), immunoprofiling, pharmacogenomics
 - Utilize public datasets (genomics, transcriptomics) for in silico discovery and validation
 - Collaborate/integrate with standardized EHR datasets (OHDSI OMOP, HL7 FHIR, Flatiron)
- Data integration and modeling for <u>scalable</u> clinical applications

HUS datalake 2018: no common data model

- Data structuring ad hoc, project-based; not into a common standard
- Overlap of data parsing efforts not an optimal use of scarce resources
- Commercial registries (e.g. BCB) suboptimally implemented, require manual data entry
- Merging Uranus and Apotti datasets a big unknown
- National, international projects: most of the time used for data structuring, conversion, not analytical work (high costs, long duration)
- Applications/algorithms built on HUS datalake poorly scalable
- No standard analytical tools

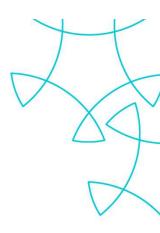
5 17-May-21

HUS datalake 2019=>

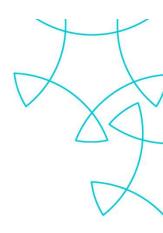
- Query of CDM standards for observational research on EHR data
 - HL7 FHIR
 - OHDSI OMOP
 - Interoperable
- OMOP selected as a pilot (BCPlatforms BCRQuest; eCare4Me B2)
- eCare4Me/B2
 - Comprehensive mapping and ETL work at the main datalake
 - Close collaboration between clinical domain experts, HUS IT and ETL experts

6

Uranus, Apotti



Observational Health Data Sciences and Informatics (OHDSI, as "Odyssey")



- <u>Mission</u>: To improve health by empowering a community to collaboratively generate the evidence that promotes better health decisions and better care
- An academic, multi-stakeholder, interdisciplinary, international collaborative with a coordinating center at Columbia University, NY

7

http://ohdsi.org

OMOP: Observational Medical Outcomes Partnership common data model implemented by the OHDSI community

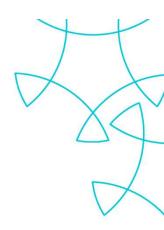
OHDSI's global research community

- >300 collaborators from 30 different countries
- Experts in informatics, statistics, epidemiology, clinical sciences
- Active participation from academia, government, industry, providers
- Records on about 600 million unique patients in >100 databases

http://ohdsi.org/who-we-are/collaborators

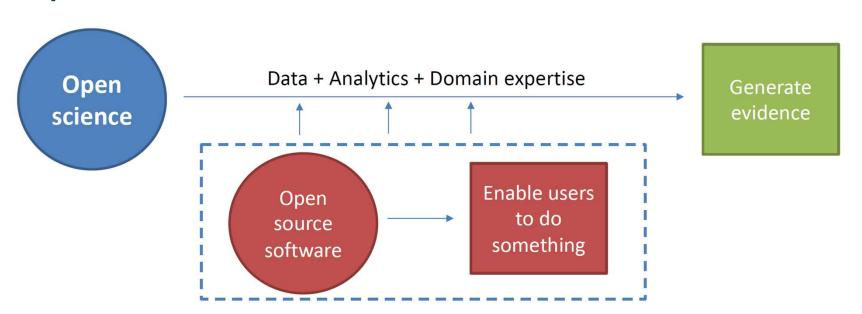
3 17-May-21

Evidence OHDSI seeks to generate from observational data

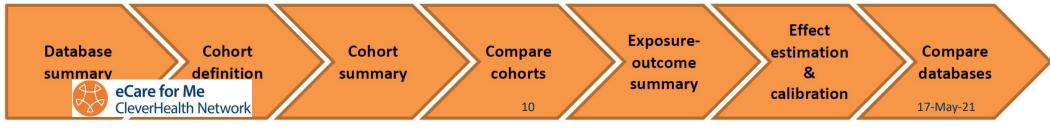


- Clinical characterization tally
 - Natural history: Who has diabetes, and who takes metformin?
 - Quality improvement: What proportion of patients with diabetes experience complications?
- Population-level estimation cause
 - Safety surveillance: Does metformin cause lactic acidosis?
 - Comparative effectiveness: Does metformin cause lactic acidosis more than glyburide?
- Patient-level prediction predict
 - Precision medicine: Given everything you know about me, if I take metformin, what is the chance I will get lactic acidosis?
 - Disease interception: Given everything you know about me, what is the chance I will develop diabetes?

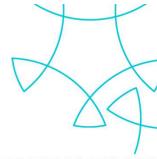
Open Science

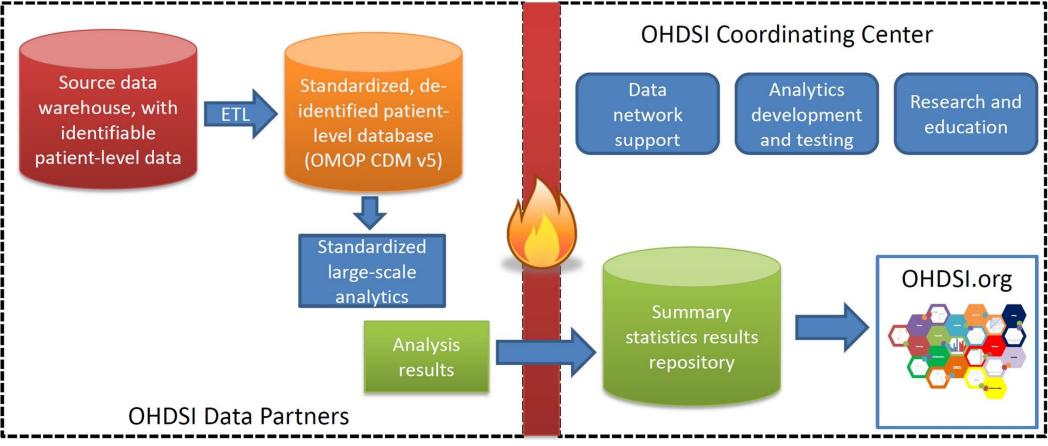


Standardized, transparent, reproducible workflows



How OHDSI Works

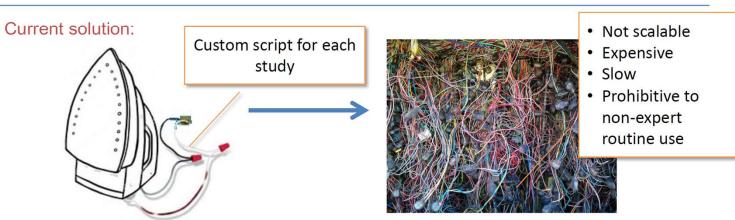


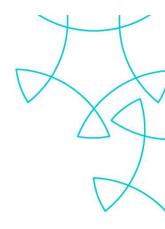


Current Approach: "One Study – One Script"

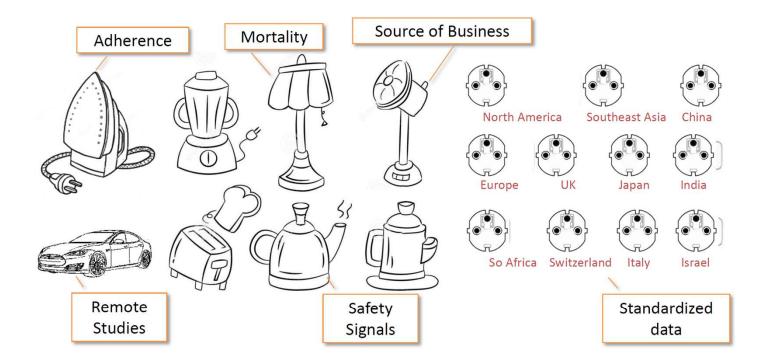
"What's the adherence to my drug in the data assets I own?"



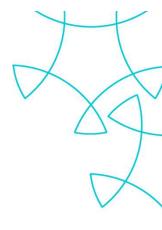




Solution: Standardized Data and Analytics



- 1. ATLAS, Remote Studies
 - Standard Cohorts
 - Standardized Analytics
 Standardized Coding
- 2. OMOP CDM
- Standardized Format



OMOP-CDM: core structure

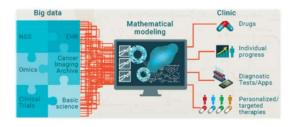
syntactic operability:

common underlying data structure (standard grammar)



analytical operability:

robust evidence generation (standard analytics)



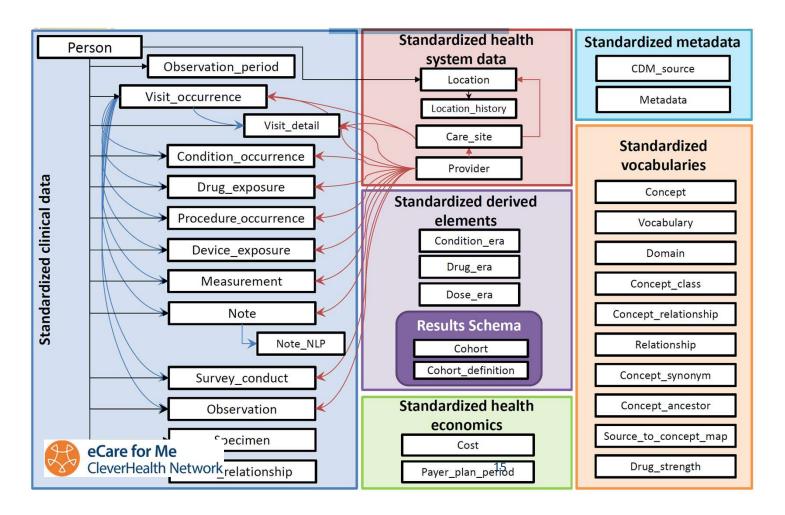
semantic operability:

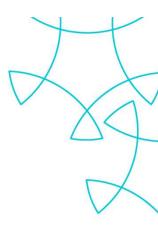
common understanding required to exchange interchange information

(standard vocabulary)

SNOMED Systematic Nomenclature of Medicine - Clinical Terms (IHDSTO) International Classification of Diseases, Ninth Revision, Clinical Medification, Volume 1 at (NOPP) (

Deep information model: OMOP CDM

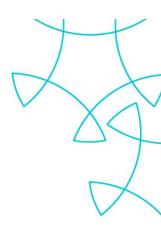




OMOP's standardized vocabularies

- 153 Vocabularies across 41 domains
 - MU3 standards: SNOMED, RxNorm, LOINC
 - Disparate sources: ICD9CM, ICD10(CM), Read, NDC, Gemscript, CPT4, HCPCS...
- >9 million concepts
 - >3.3 million standard concepts
 - >5.1 million source codes
 - >629,000 classification concepts
- >55 million concept relationships
- >84 million ancestral relationships

Publicly available for download at: http://athena.ohdsi.org/



OMOP-CDM: implementation

Uranus, Apotti

Data mapping

Mapping local datasets to OMOP tables ("Rabbits")

ETL - extract, transform, load

Automatic transformation (Data Factory etc)

Data quality

Achilles

Data quality dashboard

Data analysis

Atlas

HADES

Custom tools, interfaces

OHDSI

OMOP-teams/HUS

productivity leap

Juha Koski

Oscar Brück Perttu Koskenvesa Ilona Siljander Otso Brummer Kimmo Porkka

Pasi Rikala Pekka Stigell Tero-Matti Kinanen

Annu Kaila Niilo Aho Jani Salmi Juha Muinonen

Anja Kajanne Mirka Tammi

Antti Larjo Sergei Häyrynen Stanislav Muhametsin

Miikka Ermes Matti Ristimäki

Esa-Matti Tolppanen Jonna Salonen

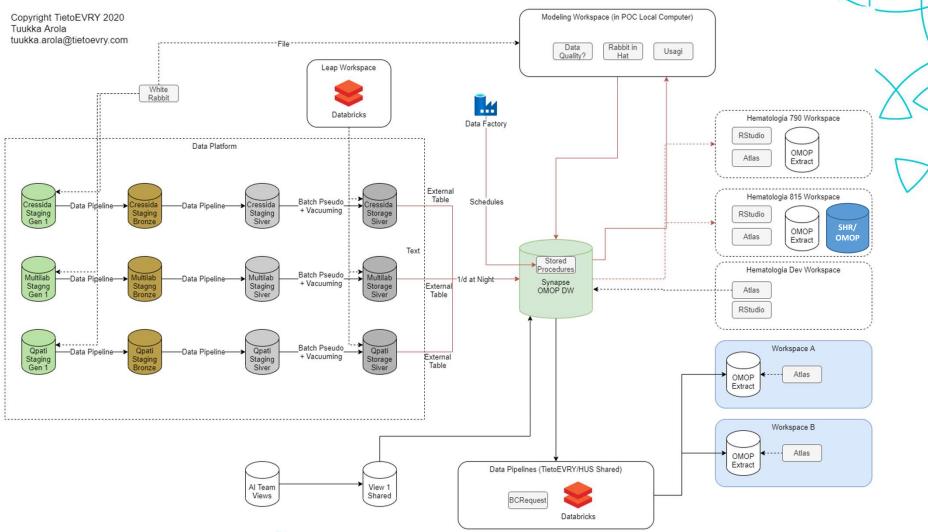
Javier Gracia Tabuenca

Caroline Heckman Esa Pitkänen Andrea Ganna

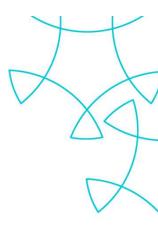
Imre Västrik

Kari Pitkänen Sami Blom

18 15.5.2020



Data Analytics Use Cases



• Characterization

- "What happened to them?"
- Count or percentage, Averages, Descriptive statistics, Incidence, Prevalence, Phenotype

• Population-level estimation

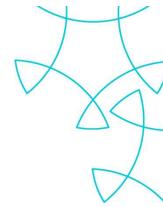
- "What are the causal effects?"
- Relative risk, Hazards/Odds ratio, Average treatment effect, Causal effect, Correlation

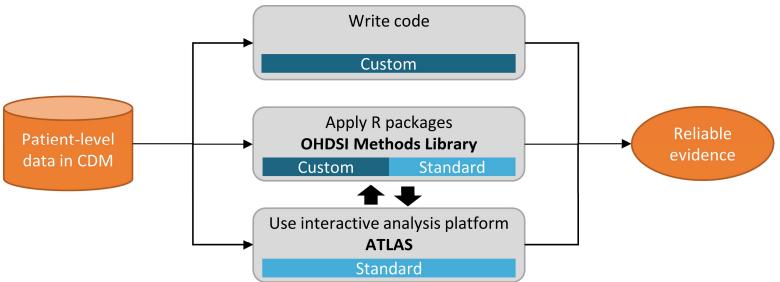
Patient-level prediction

- "What will happen to me?"
- Probability for an individual, Prediction model, High/low risk groups, Probabilistic phenotype

20 17-May-21

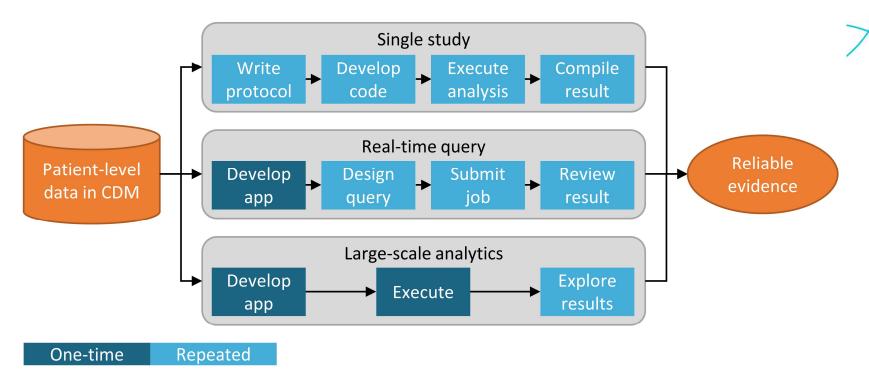
OMOP Analysis Implementation: reproducible research





21 17-May-21

Some Analysis Strategies



ARTICLE

Deep phenotyping of 34,128 adult patients hospitalised with COVID-19 in an international network study

Edward Burn et al.#

Comorbid conditions appear to be common among individuals hospitalised with coronavirus disease 2019 (COVID-19) but estimates of prevalence vary and little is known about the prior medication use of patients. Here, we describe the characteristics of adults hospitalised with COVID-19 and compare them with influenza patients. We include 34,128 (US: 8362, South Korea: 7341, Spain: 18,425) COVID-19 patients, summarising between 4811 and 11,643 unique aggregate characteristics. COVID-19 patients have been majority male in the US and Spain, but predominantly female in South Korea, Age profiles vary across data sources, Compared to 84,585 individuals hospitalised with influenza in 2014-19, COVID-19 patients have more typically been male, younger, and with fewer comorbidities and lower medication use. While protecting groups vulnerable to influenza is likely a useful starting point in the response to COVID-19, strategies will likely need to be broadened to reflect the particular characteristics of individuals being hospitalised with COVID-19.

Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis

Marc A Suchard, Martijn J Schuemie, Harlan M Krumholz, Seng Chan You, RuiJun Chen, Nicole Pratt, Christian G Reich, Jon Duke, David Madigan, George Hripcsak, Patrick B Ryan

Check for updates

Background Uncertainty remains about the optimal monotherapy for hypertension, with current guidelines recommending any primary agent among the first-line drug classes thiazide or thiazide-like diuretics, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, dihydropyridine calcium channel blockers, and non-dihydropyridine calcium channel blockers, in the absence of comorbid indications. Randomised trials have not further refined this choice.

Methods We developed a comprehensive framework for real-world evidence that enables comparative effectiveness and safety evaluation across many drugs and outcomes from observational data encompassing millions of patients, while minimising inherent bias. Using this framework, we did a systematic, large-scale study under a new-user cohort design to estimate the relative risks of three primary (acute myocardial infarction, hospitalisation for heart failure, and stroke) and six secondary effectiveness and 46 safety outcomes comparing all first-line classes across a global network of six administrative claims and three electronic health record databases. The framework addressed residual confounding, publication bias, and p-hacking using large-scale propensity adjustment, a large set of control outcomes, and full disclosure of hypotheses tested.

Findings Using 4.9 million patients, we generated 22000 calibrated, propensity-score-adjusted hazard ratios (HRs) comparing all classes and outcomes across databases. Most estimates revealed no effectiveness differences between classes; however, thiazide or thiazide-like diuretics showed better primary effectiveness than angiotensin-converting enzyme inhibitors: acute myocardial infarction (HR 0.84, 95% CI 0.75-0.95), hospitalisation for heart failure (0.83, 0.74-0.95), and stroke (0.83, 0.74-0.95) risk while on initial treatment. Safety profiles also favoured thiazide or thiazide-like diuretics over angiotensin-converting enzyme inhibitors. The non-dihydropyridine calcium channel blockers were significantly inferior to the other four classes.

Interpretation This comprehensive framework introduces a new way of doing observational health-care science at scale. The approach supports equivalence between drug classes for initiating monotherapy for hypertension-in keeping with current guidelines, with the exception of thiazide or thiazide-like diuretics superiority to angiotensinconverting enzyme inhibitors and the inferiority of non-dihydropyridine calcium channel blockers.

Funding US National Science Foundation, US National Institutes of Health, Janssen Research & Development, IQVIA, South Korean Ministry of Health & Welfare, Australian National Health and Medical Research Council.

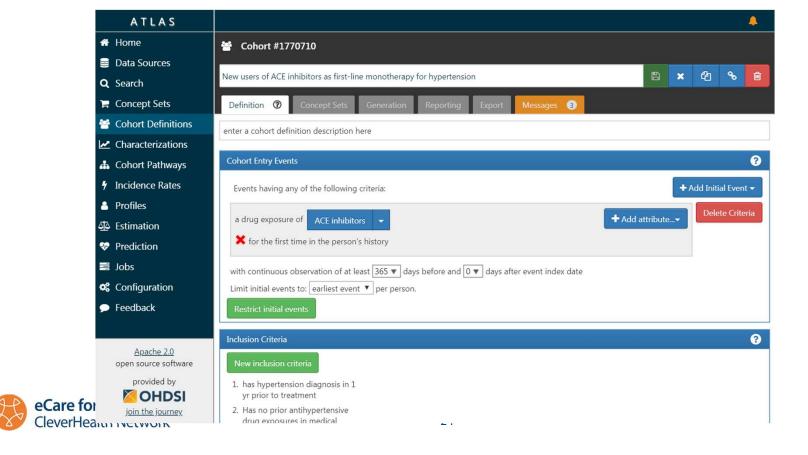
https://doi.org/10.1016/ 50140-6736(19)32317-7 See Online/Comment https://doi.org/10.1016/

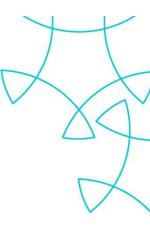
50140-6736(19)32461-4

Department of Biostatistics, Fielding School of Public Health (Prof M A Suchard MD. Biomathematics, David Geffer School of Medicine at UCLA (Prof M A Suchard), University of California, Los Angeles, CA, USA; Epidemiology Analytics, Janssen Research & Development, Titusville, NJ, USA (M I Schuemie. PB Ryan PhD); Department of Medicine, Yale University School of Medicine New Haven, CA, USA (Prof H M Krumholz MD); Department of Biomedica Informatics, Ajou University School of Medicine, Suwon. South Korea (S C You MD): Department of Medicine. Weill Cornell Medical College New York, NY, USA (R Chen MD); Department of Biomedical Informatics. Columbia University Medical Center, New York, NY, USA (R Chen Prof G Hrincsak MD) P.R.Rvan): Quality Use of

Atlas

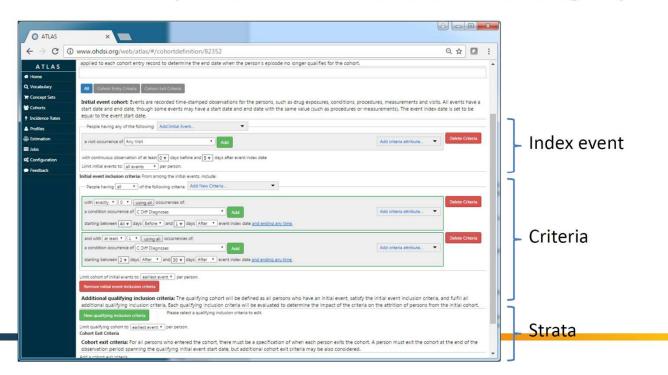
ATLAS is a free, publicly available, web-based tool developed by the OHDSI community that facilitates the design and execution of analyses on standardized, patient-level, observational data in the CDM format.





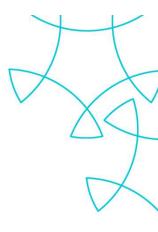
ATLAS: Cohort building

- Optimized for observational research
 - Time series: who and when (vs classification)
 - · Observation period, event timing
 - Assume a complex definition Linearized AND-OR group



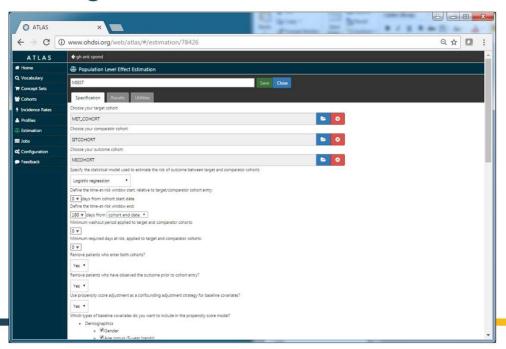
ATLAS: Visualization

- Tables
- Graphs



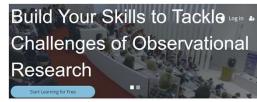
ATLAS: Analysis (observational)

- Approach: log regression, Poisson regression, survival
- Confounder: regularized-regression propensity score
- Residual confounding: calibration
- Diagnostics



OHDSI standardized analytical tools: training

Book of OHDSI: https://ohdsi.github.io/TheBookOfOhdsi/



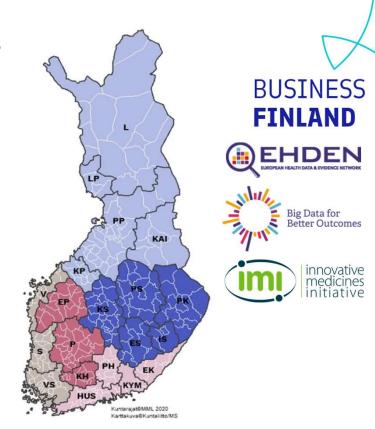
THE BOOK OF

OHDSI

- Training videos: https://www.youtube.com/user/OHDSIJoinTheJourney
- Study-a-thons:
- Local seminars

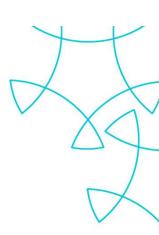
<u>FIN-OMOP</u>: national, population-based OMOP CDM database of EHR and registry data

- Started 2019, project lead prof Tarja Laitinen, TAYS
- 5 university hospital districts, currently 3 actively mapping
- Inclusion of national governmental registries discussed (THL; e.g. drug prescriptions and reimbursement, cancer registry)
- Federated and centralized analysis
- First versions in production Q3 2021
- Funded by Business Finland, hospital districts, EU (EHDEN)



29 17.5.2021

Vision for Finland: all key observational datasets under a CDM



- All hospital datalakes
- THL registries
- Other high-quality, disease-specific registries
- A unique, population-based data resource for observational research and generating reliable evidence for decision making
- A highly desirable partner for international collaboration

30 17-May-21