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Data was collected in a pilot-scale drink-
ing water distribution system.

Random forest regression was trained to
predict abundances of bacterial groups.
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Waterborne disease outbreaks are a persistent and serious threat to public health according to reported incidents
across the globe. Online drinking water quality monitoring technologies have evolved substantially and have be-
come more accurate and accessible. However, using online measurements alone is unsuitable for detecting mi-
crobial regrowth, potentially including harmful species, ahead of time in the distribution systems.
Alternatively, observational data could be collected periodically, e.g. once per week or once per month and it
could include a representative set of variables: physicochemical water characteristics, disinfectant concentra-
tions, and bacterial abundances, which would be a valuable source of knowledge for predictive modelling that
aims to reveal pathogen-related threats. In this study, we utilised data collected from a pilot-scale drinking
water distribution system. A data-driven random forest model was used for predictive modelling and was trained
for nowcasting and forecasting abundances of bacterial groups. In all the experiments, we followed the realistic
crossline scenario, which means that when training and testing the models the data is collected from different
pipelines. In spite of the more accurate results of the nowcasting, the 1-week forecasting still provided accurate
predictions of the most abundant bacteria, their rapid increase and decrease. In the future predictive modelling
might be used as a tool in designing control measures for opportunistic pathogens which are able to multiply
in the favourable conditions in drinking water distribution systems (DWDS). Eventually, the forecasting informa-
tion will be able to produce practically helpful data for controlling the DWDS regrowth.
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1. Introduction

Monitoring drinking water quality aims to protect public health, pre-
vent waterborne disease outbreaks (WBOs), and provide a sustainable
water supply (WMO, 2013; Borden and Roy, 2015). Despite a variety
of legislation imposed to regulate water quality management, multiple
recent reports on WBOs have revealed the evident inadequacy of
these measures in preventing illnesses (Figueras and Borrego, 2010).
Benedict et al. (2017) summarized 42 reports on WBOs in the U.S. com-
prising 1006 cases of illness and 13 deaths for 2013-2014. Moreira and
Bondelind (2017) reviewed 66 articles reporting incidents of WBOs in
Europe, North America and New Zealand for the period of 2000-2014
and found that the highest number of WBOs (more than 25 outbreaks)
were associated with distribution network failures, which confirms the
importance of water quality surveillance in the drinking water distribu-
tion systems (DWDS) (Bridle et al., 2015). While the treated drinking
water goes through a DWDS, its quality changes due to complex physi-
cochemical processes and microbial interactions (Ikonen et al,, 2013).In
particular, water characteristics (temperature, pH, conductivity), envi-
ronmental factors, pipe material, and microbial communities influence
the drinking water quality (Inkinen et al., 2018). Since the existing lab-
oratory methods applied to characterise microbiota are time-
consuming, expensive and require highly trained personnel for the
analysis, sampling and testing all combinations of all possible factors is
not possible (Douterelo et al., 2014). Therefore, cutting-edge studies
promote the design of data-driven models which enable knowledge ex-
traction, forecasting and risk assessment (Wu and Rahman, 2017; De
Clercq et al.,, 2018; Muharemi et al., 2019).

Overviews of recent water-related studies infer that online-
monitoring, nowcasting and forecasting are the central trends in micro-
bial community modelling (Pachepsky et al., 2018). Nowcasting focuses
on estimating the present microbial numbers, usually based on the cur-
rent environmental data (Zhang et al., 2018), whereas forecasting aims
to predict the amount of microorganisms contained in the water at
some time in the future (Frick et al., 2008). Forecasting may allow the
prevention of the water quality deterioration by implementing timely
interventions. Nevertheless, for both nowcasting and forecasting the re-
sults are dependent on the quality of the data collected and the rele-
vancy of the predictor set, since the models applied are data driven.

The data extracted from bulk water samples and biofilms, which are
bacterial growths on surfaces (e.g. the inner surface of a pipe), is the
main source of knowledge of the investigated phenomenon for all
water research. Small-scale laboratory experiments enable monitoring
some preselected species under the controlled conditions, whereas
full-scale experiments represent the dynamics and diversity of the mi-
crobial community in the distribution system (Douterelo et al., 2016;
Fish et al.,, 2016; Pachepsky et al., 2018). Large DWDS-simulation facili-
ties comprising tanks, pumps, and many meters of pipes are able to re-
produce sophisticated microbial interactions affected by the pipe
material, disinfectants and dynamic environment (Fish et al., 2015;
Fish and Boxall, 2018).

Making accurate predictions of microorganism abundances requires
data which describes the whole microbial community, such as a dataset
generated by 16S rRNA gene amplicon sequencing which reveals signif-
icant microbial interactions by the learning algorithm automatically
(Asgari et al., 2019; Gilfillan et al., 2018). Additionally, the number of
potential predictors depends on the taxonomic level chosen for the
modelling. The lower the taxonomic level of the characterised microor-
ganisms, the more microbial groups are distinguished in the commu-
nity, and more predictor variables are presented in the data
(Ridenhour et al., 2017). Environmental and water characteristics, as
well as the pipe material and disinfectants all affect microbial abun-
dances (Palamuleni and Akoth, 2015). As a result, the high-
dimensional set of potential predictors complicates the modelling and
becomes an obstacle for many learning algorithms (Guyon and
Elisseeff, 2003; Zheng and Casari, 2018). After conducting a full-scale

experiment and collecting the relevant data carefully, the appropriate
learning algorithm is chosen and applied. To train an adequate predic-
tive model, the algorithm should be capable of handling lots of predic-
tors, multicollinearity, and complex non-linear dependencies.

A learning algorithm that is widely used in predictive modelling,
even when the number of variables exceeds the sample size greatly, is
the random forest (RF) algorithm (Tyralis and Papacharalampous,
2017). It has already been applied successfully in various microbiologi-
cal studies to solve classification problems (Baudron et al., 2013; Peters
et al., 2007), for nowcasting (Vincenzi et al., 2011) and forecasting
(Mohammed and Seidu, 2019; Parkhurst et al., 2005). The studies re-
vealed the potential of RF for microbial predictive modelling and this ex-
plains the choice of the learning algorithm for the current study.

This paper presents the results of a data-driven modelling study
which aimed to predict abundances of bacteria in microbial communi-
ties based on the data collected from a large pilot-scale DWDS-
simulation system (Kuopio, Finland). This experiment was performed
based on the knowledge extracted from a previous full-scale experi-
ment (Ikonen et al., 2017; Inkinen et al., 2019). Utilising the data from
the pilot experiment, we evaluated the quality of the collected data in
terms of predictive modelling and investigated the performance of the
trained models and their suitability to support real-world microbial
risk evaluation procedures. This study aims to model the bacterial com-
munity and the major focus of the modelling is on crossline predicting
bacterial abundances, i.e. the data collected from one line is used to
train a model which is then applied to make predictions for another
line. This approach is practically valuable since it simulates a real-
world scenario when models trained on data gathered from a few
DWDS are used in other DWDS.

2. Materials and methods
2.1. The DWDS-simulation system

A DWDS-simulation system with four study lines employing copper
and crosslinked polyethylene (PEX) pipes with sodium hypochlorite or
chloramine disinfection was built for the study (Table 1). The DWDS
pipelines consisted of two copper lines and two PEX lines with a length
of about 57 m and an inner diameter of 10 mm. The pipeline character-
istics are shown in Table 1.

Water for the system was supplied from a pilot-scale drinking water
treatment plant using surface water. The water treatment included co-
agulation, flotation, sand filtration, and alkalisation for pH adjustment.
Continuous disinfection with an inlet chlorine concentration of 0.3 mg
Cly/1 for all four pipelines was supplied by pumping a sodium hypochlo-
rite solution in two lines, and sodium hypochlorite and ammonium so-
lutions that formed chloramine when mixed in the pipe in the other two
lines. The hypochlorite disinfected line was divided into one copper line
and one PEX line, and similarly the chloramine disinfected line was di-
vided into two lines with two different pipe materials. The water flow
was restricted to 250 ml/min (0.053 m/s).

Weekly sampling for microbial studies and physicochemical mea-
surements were gathered for seven weeks before starting disinfection
on 2.8.2017. After the disinfection was initiated, weekly sampling con-
tinued for ten weeks. A total of seven samples from each four study
lines without disinfection and eleven samples with disinfection were
taken over the time period of 21.6.2017-11.10.2017.

Table 1
The DWDS-simulation system pipelines: materials and disinfectants.

Pipeline number Pipe material Disinfectant
Line 1 Copper Hypochlorite
Line 2 Copper Chloramine
Line 3 PEX Hypochlorite
Line 4 PEX Chloramine
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Physicochemical parameters such as the temperature, pH, electric
conductivity, copper and iron concentrations were measured as previ-
ously described by Ikonen et al. (2017). Free and total chlorine, chlora-
mine, and ammonium concentrations were measured immediately
after sampling. Bacterial communities were analysed using Illumina
MiSeq high-throughput amplicon sequencing targeting the V4 region
of the 16S rRNA gene using 341F/785R primers (Klindworth et al.,
2013).

One litre of water was filtered on polyethersulfone (PES) membrane
filters with pore size of 0.22 pm (Express Plus Membrane, Merck
Millipore, Ireland) after which the filters were stored at —75 °C or
lower. Total nucleic acids were extracted as previously described by
Inkinen et al. (2019). In brief, Chemagic DNA Plant Kit (Perkin Elmer,
Waltham, MA, USA) was used and RNA was further purified using
Ambion Turbo DNA-free DNase kit (Life Technologies, Carlsbad, CA,
USA). cDNA was synthesized using Invitrogen Superscript [V VILO sys-
tem (Thermo Fisher Scientific, Waltham, MA, USA) and used in the
16S rRNA analysis. The high-throughput Illumina MiSeq amplicon li-
braries produced by LGC Genomics (LGC Genomics GmbH, Berlin,
Germany) were processed and amplicon sequence variants (ASVs)
(Callahan et al., 2017) analysed using QIIME (Quantitative Insights
Into Microbial Ecology) (Caporaso et al., 2010) to define bacterial
groups and their abundances in water samples. The characteristics of
the bacterial community in relation to the measured water quality pa-
rameters will be presented in more detail by Siponen et al. (2020,
unpublished results).

2.2. Data pre-processing

The data used in the modelling is comprised of four groups of vari-
ables. The physicochemical water characteristics measured in pipelines
include temperature (°C), pH, electric conductivity (uS/cm), Cu (mg/1),
and Fe (mg/1). Next, there is the quantity of raw chemical disinfectants
entering the pipelines, namely chlorine (mg Cl,/1) and ammonium (mg/
1). The set of variables also includes absolute abundance of ASVs as read
counts measured in the incoming and pipeline water.

Sequencing read counts were summed up to the order level in the
taxonomy. The most abundant groups were selected for modelling
based on their median values. 20 ASVs were chosen from the bacteria
in the incoming water, other less abundant bacteria were combined in
one more group. Then, 25 of the most abundant ASVs were selected
from the bacteria in the pipeline water, and again other bacteria were
pooled in one group. Other microbes than bacteria are not included in
the analysis of this study. Table 2 and Supplementary material 1 provide
more details on the set of variables.

Before applying any data transformation, there was a need for the
imputation of missing values. To fill the gaps, a monotone piecewise
cubic interpolation method was applied (Fritch and Carlson, 1980).
This produced continuous functions which enabled us to generate addi-
tional sample points between the collected measurements, which also
resulted in a higher time resolution in the dataset: a multivariate time
series with a 6-hour interval was derived for training the model.

With more frequent data points, it became possible to vary the pre-
diction horizon, so that we could test 1-, 7- and 30-day prediction hori-
zons. Then, the data was normalised into the interval [0,1] and was
applied to all the variables.

2.3. Random forest regression

Decision trees (DTs) are capable of identifying complicated non-
linear interconnections in the data with no assumptions concerning var-
iable distributions (Quinlan, 1986). DTs map the set of m predictors x =
{x1,X2,...,Xn}, which may contain both continuous and categorical vari-
ables, to the response variable y, which is categorical in the case of clas-
sification and continuous in the case of regression: y = f(x). A DT model
is a white box model, which is advantageous for interpreting impacts of

predictors (inputs) on the response variable (output) (Breiman et al.,
1984).

Despite multiple benefits of the DT model, it appears to be sensitive
to small changes in the data and vulnerable to overfitting (Hastie et al.,
2009). To reduce the variance and make the model more stable and to
prevent overfitting, Breiman proposed an ensemble learning meta-
algorithm called the random forest (RF) method (Breiman, 2001). The
RF method generates an ensemble of DTs using bootstrap aggregating
(also known as bagging). Each i-th DT is trained on the subsample D;

of size N produced from the initial training data D of size N with a re-
placement, i = 1, K, where K is an ensemble size. If the sampling is uni-

form and N = N then every subsample D; contains about two thirds of
unique examples from the initial training data D. When the number of
DTs in the ensemble is sufficient, averaging their outputs leads to higher
stability, robustness to the outliers and lower variance in comparison to
a single DT, which varies a lot while training on different subsamples
(Hastie et al., 2009).

When training an ensemble of DTs, the learning algorithm evalu-
ates the performance of the i-th tree on the set D\D; acting as a vali-
dation set. The use of this out-of-bag estimate helps to avoid
overfitting which makes RF more preferable compared to a single
tree. Moreover, training DTs includes a variable selection step, in
which the best split for each node is searched for within L randomly
selected variables. In this study, the mean squared error estimates
the quality of a split (the decrease in the impurity). Due to the
built-in variable selection, RF is applicable even if the number of pre-
dictors m is much higher than the sample size N (Diaz-Uriarte and
Alvarez de Andrés, 2006).

In contrast to a single tree, RF is a black box model since the interpre-
tation of the model structures becomes impossible when the ensemble
comprises hundreds or even thousands of trees. However, the influence
of predictor variables on the response is measured with special metrics
such as the mean decrease in impurity (MDI) or mean decrease in accu-
racy (MDA) (Genuer et al., 2010; Louppe, 2014). Then MDI, which is
used in this work, evaluates the decrease in the impurity caused by
splitting with a particular variable. This is weighted with the number
of samples in the node and averaged over the ensemble of trees
(Nembrini et al.,, 2018).

RF has a number of meta-parameters, which need tuning: the num-
ber of trees in the ensemble K, the maximum tree depth d, and the num-
ber of variables selected L while looking for the best split (Goldstein
et al., 2011). Typically, some recommended values are acceptable be-
cause RF is not very sensitive in this respect. Several hundred is a com-
monly used value for K, otherwise overly small values lead to
overfitting, whereas overly high values make the training process
time-consuming. Pruning trees, i.e. reducing d, works well for noisy
data and also prevents overfitting. The following rule is applied to define
L: L = /m, which makes this parameter adaptive.

In this work, the response variable, which is the absolute bacterial
abundance (i.e., the read counts), is continuous, therefore, we use the
random forest regression method implemented in the scikit-learn li-
brary (Pedregosa et al.,2011). The results of the modelling are evaluated
with the following metrics:

» The index of agreement (IA) is the relative measure of the model per-
formance and calculated as follows (Willmott, 1981):

S . a—]
Yict (Vi—=YI+1vi—Y)

where SSE = >0, (v; yl) ,yiis an observed value of the response var-

iable, y; is a predicted value, i.e. a model outcome,y = Z yoi=1,nn
is the number of observations. IA € [0, 1], higher values éﬂA correspond
to better models.



Table 2
The set of variables used in the modelling.
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The statistical characteristics are estimated for the data collected from all the lines.

Group of variables Variable Median Mean Std Max Min
Physico-chemical Temperature (°C) 19.4 19.0 1.2 20.6 15.9
pH 8.0 8.0 0.1 8.2 7.8
Electric conductivity (uS/cm) 218 219 14 264 199
Cu (mg/1) 0.11 0.17 0.18 0.69 0.01
Fe (mg/1) 0.09 0.10 0.04 0.28 0.02
Disinfection Chlorine (mg/1) 0.23 0.18 0.16 0.33 0.00
Ammonium (mg/1) 0.07 0.05 0.05 0.10 0.00
Bacteria in the incoming water Proteobacteria - Gammaproteobacteria - Betaproteobacteriales 5886 9106.34 9738.51 36,015 272
(abundance as read counts) Proteobacteria - Alphaproteobacteria - Rhizobiales 803 1109.28 1093.11 3573 0
Proteobacteria - Alphaproteobacteria - Acetobacterales 284 2254.89 3057.86 9551 100
Chloroflexi - Jg30 - Kf - Cm66 - Na 230 1516.74 2174.75 6772 9
Planctomycetes - Planctomycetacia - Gemmatales 196 366.59 379.03 1182 11
Proteobacteria - Alphaproteobacteria - Rhodobacterales 145 122.15 84.64 262 0
Proteobacteria - Alphaproteobacteria - Caulobacterales 144 110.38 74.84 194 0
Planctomycetes - Planctomycetacia - Isosphaerales 133 125.72 65.73 214 8
Cyanobacteria - Oxyphotobacteria - Synechococcales 102 102.94 4419 222 22
Bacteroidetes - Bacteroidia - Chitinophagales 95 277.63 469.22 1712 0
Actinobacteria - Actinobacteria - Frankiales 91 159.45 22033 819 0
Proteobacteria - Deltaproteobacteria - Myxococcales 87 89.82 73.54 288 14
Acidobacteria - Acidobacteriia - Solibacterales 82 352.40 455.94 1417 0
Bacteroidetes - Bacteroidia - Sphingobacteriales 80 109.62 114.52 440 0
Proteobacteria - Alphaproteobacteria - Sphingomonadales 77 85.37 67.53 272 0
Acidobacteria - Subgroup - 6 - Na 68 113.18 122.28 383 0
Chloroflexi - Olb14 - Na 65 63.03 41.49 116 6
Planctomycetes - Phycisphaerae - Phycisphaerales 60 58.12 33.42 116 16
Verrucomicrobia - Verrucomicrobiae - Pedosphaerales 44 47.93 28.00 98 12
Gemmatimonadetes - Gemmatimonadetes - Gemmatimonadales 42 109.05 13247 439 8
Other less abundant bacteria 1200 2158.86 2151.47 7459 329
Bacteria in the pipeline water Proteobacteria - Gammaproteobacteria - Betaproteobacteriales 3297 6468.70 8224.29 43,834 0
(abundance as read counts) Proteobacteria - Alphaproteobacteria - Rhizobiales 936 1209.17 1144.00 4660 32
Proteobacteria - Alphaproteobacteria - Acetobacterales 602 1408.48 1877.87 10,034 0
Planctomycetes - Planctomycetacia - Gemmatales 183 471.18 614.71 2838 0
Planctomycetes - Planctomycetacia - Isosphaerales 167 387.67 487.41 2160 0
Cyanobacteria - Oxyphotobacteria - Synechococcales 152 269.03 369.89 1792 0
Chloroflexi - Jg30 - Kf - Cm66 - Na 131 1516.33 4299.48 23,627 0
Acidobacteria - Acidobacteriia - Solibacterales 114 337.98 619.81 3937 0
Actinobacteria - Actinobacteria - Frankiales 112 203.08 24724 1052 0
Bacteroidetes - Bacteroidia - Chitinophagales 109 299.06 512.67 2911 0
Proteobacteria - Deltaproteobacteria - Myxococcales 107 185.88 230.80 987 0
Bacteroidetes - Bacteroidia - Sphingobacteriales 104 167.95 207.44 1105 0
Proteobacteria - Alphaproteobacteria - Caulobacterales 85 311.48 621.69 2799 0
Verrucomicrobia - Verrucomicrobiae - Pedosphaerales 81 231.32 394.90 2220 0
Proteobacteria - Deltaproteobacteria - Oligoflexales 74 115.57 127.36 570 0
Planctomycetes - Planctomycetacia - Planctomycetales 64 647.04 2505.69 17,091 0
Proteobacteria - Alphaproteobacteria - Sphingomonadales 63 360.41 831.25 3943 0
Proteobacteria - Alphaproteobacteria - Rhodospirillales 59 296.37 507.16 2190 0
Acidobacteria - Subgroup_6 - Na 58 175.54 248.30 1157 0
Cyanobacteria - Oxyphotobacteria - Pseudanabaenales 56 988.07 2401.04 12,604 0
Cyanobacteria - Oxyphotobacteria - Chloroplast 54 157.59 317.55 2306 0
Verrucomicrobia - Verrucomicrobiae - Methylacidiphilales 53 134.02 184.97 942 0
Chloroflexi - Olb14 - Na 53 148.27 208.86 808 0
Planctomycetes - Phycisphaerae - Phycisphaerales 53 167.43 22734 1119 0
Proteobacteria - Alphaproteobacteria - Reyranellales 49 175.83 339.88 2237 0
Other less abundant bacteria 2620 5819.03 7563.28 32,191 319

* The root mean square error (RMSE) is a non-negative scale-dependent

measure (Willmott et al., 1985):

RMSE =

species, the RMSE is applied to the normalised values of the response

variable to compare the model predictive ability for the species within

the community.

In all the experiments, to estimate the RF performance and its ability
to make generalisations, the IA and RMSE were calculated on the test
data, whereas the training data was used only to learn the model.

3. Results

3.1. Nowcasting

Lower RMSE values indicate a higher model accuracy. The RMSE is

measured in the units of the response variable and used to compare
models within one dataset. This metric is highly sensitive to outliers.
In the study, since the values of the read counts vary greatly for different

The nowcasting model predicts the abundance of the i-th bacterium
from the pipeline water community at time t using physicochemical
variables, disinfection, bacterial abundances in the incoming water,
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and abundances of other bacteria in the pipeline water from the same
moment ¢ as inputs.

Letu = {u4,Uy,...,u,} denote the set of predictors including physico-
chemical variables, disinfection, and read counts in the incoming water
and X = {X1,Xa,...,Xn} denote read counts in the pipeline water. For each
i-th bacterium i = 1, m, the following model was trained: x{ = fi(u},...,
Up XYy oo Xy oo Xi 1% ).

We conducted a series of experiments wherein the original weekly
collected measurements from each pipeline were used as the test
data, while models were trained on the data from other pipelines. For
example, if the model was tested on the data from Line 1, the training
data was generated from samples collected in Lines 2, 3, and 4. In our ex-
periments, we investigated different cases of crossline modelling when
the training data was taken from any single pipeline or several pipelines.
The training data included the original measurements as well as the in-
terpolated data. After several trials, the main RF parameters were de-
fined as follows: d = 10, K = 250, L = /m.

Fig. 1 presents the experimental results which have been obtained
for each bacterium from the community while testing models on differ-
ent pipelines. The results contain the highest achieved IA for every test
line (the first four bars) and the aggregated value of IA averaged over
test lines for each bacterium (the fifth bar). The bars are labelled with
the training data that led to the highest IA.

This experiment revealed differences in the achieved IA for the in-
vestigated bacteria, which might be explained by the absence of infor-
mative predictors (factors that affect some particular bacteria) or with
inaccuracy of measurements. IA values which are higher that
0.70-0.80 indicate adequate models which could potentially be applica-
ble in practice.

For many cases, the training data that provided the best IA was a set
combined from several pipelines. Since there are no identical pipes
made of the same material and with the same disinfection, the use of
data from different lines tends to make the training set more represen-
tative. Therefore, we investigated the influence of these two factors (the
pipe material and disinfectant) on the model quality. We compared
cases when the training and test samples were taken from pipes of
the same material and from pipes with the same disinfection. Fig. 2 illus-
trates this comparative analysis. Four pairs of tables with IA and RMSE
values correspond to test samples from Lines 1, 2, 3, and 4. Columns in
the tables represent different training data. Based on the point estimate
given in the last row (the median value), in three out of four cases better
values of IA and RMSE were achieved when the training and test data
were taken from pipelines with the same disinfection. The IA density
functions below also prove this as they are shifted closer to 1.0 in the
case of the same disinfection. The RMSE densities also differ but not
much. Nevertheless, merging two training sets together, representing
the same pipe material and disinfection, involves more information in
the learning process, and consequently it leads to higher model perfor-
mance, which is illustrated distinctively with median values and IA den-
sity functions in all four cases (Fig. 2).

In Supplementary material 2, we provide more results for each bac-
terium. There are more IA values reached with models trained on differ-
ent sets. This includes the case when the training and test data were
taken from the same line (the original measurements and interpolated
points were used as the test and training data, correspondingly) and
we could gain 0.99-1.0 IA, which was possible due to using the training
data from the high time resolution.

3.2. Forecasting

While nowcasting reveals existing interconnections in the data, fore-
casting is more useful for real-world applications since it enables risk es-
timation in advance. In case of forecasting, the model predicts bacterial
abundances at time t + 1 based on measurements collected at time t: x}
= ful, .. ub, XS, XE).

To evaluate the potential of forecasting in terms of crossline model-
ling, we repeated the same experiments as we did for nowcasting. The
prediction horizon was set to 7 days, which equalled the interval be-
tween the original measurements. The results of the forecasting are
shown in Fig. 3 (also in Supplementary material 3).

In comparison with the IA values shown by the nowcasting, the ones
in the forecast are much lower for many bacteria. Nevertheless, some of
the trained models provided acceptable IA values higher than 0.70-0.80.
In many cases the best IA values again were obtained with the models
trained on the data containing samples from several lines.

While analysing the influence of the pipe material and disinfection
on the results of the forecasting, we found that better results were
achieved when the training and test data were taken from pipes made
of the same material, which was in contrast to what we had found for
the nowcasting (Fig. 4). Thus, when the models were trained to make
predictions for the future, the pipe material became a more significant
factor.

Meanwhile, the use of the joint samples positively affects the model
quality and leads to better results, which is consistent with the conclu-
sions made for nowcasting (Fig. 4). Comparing the associated IA values
obtained for different lines (third columns in the 'IA’ tables), we should
note that many of the bacteria predictions made for pipelines 1 and 2
are more accurate than the ones made for lines 3 and 4. The median
values show the same.

The predicted abundances of the whole community are illustrated in
Fig. 5. In almost all cases, the models captured and forecasted an in-
crease in the amount of bacteria as well as a dramatic decrease. How-
ever, the sudden increase in the bacterial numbers was
underestimated for pipe 3 on 9.8.2017 (order Betaproteobacteriales,
class Gammaproteobacteria, phylum Proteobacteria), for pipe 4 on
27.9.2017 (order Pseudanabaenales, class Cyanobacteria, phylum
Oxyphotobacteria; an unassigned ASV from the phylum Chloroflexi),
and the abrupt reduction of all the ASVs was not predicted for pipe 4
on 16.8.2017. In some cases, bacterial abundances were overestimated
as it was with an unassigned ASV from the phylum Chloroflexi in line 1
or underestimated as it occurred with Planctomycetales (class
Planctomycetacia, phylum Planctomycetes) in line 3. Nevertheless, the
most abundant bacteria were mainly predicted correctly.

Analysing the importance of predictor variables in 7-day forecasting,
we took into account all the trained crossline models and found that the
physicochemical variables, particularly the pH, temperature, and Cu,
had the highest importance (Supplementary material 4). The incoming
water bacteria such as Myxococcales (class Deltaproteobacteria, phylum
Proteobacteria), one unassigned ASV from the phylum Chloroflexi, and
Chitinophagales (class Bacteroidia, phylum Bacteroidetes) were also
found within the most important variables. Other important predictors
were related to the bacterial abundances in the pipeline water. These in-
cluded: Pseudanabaenales (class Oxyphotobacteria, phylum
Cyanobacteria), an unassigned ASV from the phylum Chloroflexi, and
Sphingomonadales (class Alphaproteobacteria, phylum Proteobacteria).

Interestingly, the bacteria in the incoming and pipeline water se-
lected as the most important predictors had medium abundances (not
the most abundant ones). Disinfection variables were the least impor-
tant: the bacterial abundances already reflect this information indi-
rectly. Despite several commonly important predictors, shown as
outliers (black dots above the boxplots) in the picture (Fig. 1, Supple-
mentary material 4) prove that for predicting the amount of a particular
bacterium some other specific variables are required.

In additional experiments, we varied the prediction horizon and
tested models making 1-day and 30-day forecasts. Supplementary ma-
terial 5 contains the results of these experiments. 1-day predictions ap-
peared to be the most accurate because the abundances x{™! do not
differ much from x{ included in the set of predictors. 30-day predictions
were much less accurate but still in some cases the IA values reached
0.70-0.80. For the most abundant bacteria Betaproteobacteriales (class
Gammaproteobacteria, phylum Proteobacteria), Rhizobiales and
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Fig. 1. Crossline nowcasting. The experimental results show the highest IA achieved for each bacterium. The bar label corresponds to the training data used and its colour refers to the test data. Dashed lines indicate 0.7 and 0.8 levels of IA which
correspond to practically acceptable models. The bacteria are listed in descending order of their abundance as read counts.
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Fig. 2. Influence of the pipe material and disinfection on the model performance in the crossline nowcasting.
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Fig. 4. The influence of the pipe material and disinfection on the model performance in the crossline 7-day forecasting.
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Fig. 5. Comparison of the observed bacterial abundances and the obtained 7-day forecasts.
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Acetobacterales (class Alphaproteobacteria, phylum Proteobacteria), the
IA values averaged over all the lines were higher than 0.7, which proved
the potential for making even long-term predictions.

4. Discussion

Advanced learning algorithms should be involved in drinking water
monitoring and risk assessment systems to train adequate data-driven
models to predict microbial abundances. Such intellectual systems re-
quire reliable and representative data which describes the dynamics
within the microbial community (Bersanelli et al., 2016). Learning algo-
rithms extract substantial knowledge and patterns from collected sam-
ples, and then make generalisations and forecasts based on the set of
predictor variables (Kuang et al., 2016). The model performance de-
pends on the data quality, its accuracy and completeness, since it should
reflect all crucial interconnections in the microbial community and how
external factors influence it (Zuiiga et al., 2017). Therefore, large
DWDS-simulation systems are needed to collect the training data prop-
erly, use it in the predictive modelling and, then, to transfer the acquired
knowledge into practice.

To build the predictive models for this study, we used data collected
from a pilot-scale experiment conducted in Finland and a simulated
DWDS. The data included the physicochemical water characteristics,
the type and amount of the disinfectants pumped, and microbial abun-
dances in the incoming and pipeline water. In the experiments, we op-
erated with absolute abundance as read counts since an increase or
decrease in relative abundance does not necessarily mean the same
change in absolute abundance (Props et al., 2017). The predictive
models were designed for the bacterial community in the pipeline
water. Despite the thorough set of predictor variables and regular mea-
surements, we admit that the main limitation of the data collected is the
short observational period (less than four months), which also affects
the results of modelling. Thereby, the interpolated points were used
not only to fill missing values in the data but were also involved in train-
ing the models to enlarge the sample size and make experiments with
different prediction horizons possible.

The central idea behind this study was to test a crossline modelling
scenario that complies with the real-world application of intellectual
monitoring systems in different DWDS. Four pipelines with different
characteristics (pipe materials and disinfection) and gathered measure-
ments enabled us to perform this crossline modelling and investigate
significant factors which influenced the model quality. The trained
models were applied for nowcasting the bacterial abundances as well
as for 1-, 7-, and 30-day forecasting. In all the experiments, an RF algo-
rithm was used as the learning algorithm because of its beneficial prop-
erties for the microbial predictive modelling and due to multiple
existing examples of its successful application in water research
(Roguet et al., 2018; Mohammed et al., 2018). Moreover, the bacterial
community presented in this study includes many groups which are
identical to those revealed in full-scale DWDS (Liihrig et al., 2015;
Perrin et al., 2019; Wang et al., 2018b). This proves that we fulfilled
the modelling under conditions close to reality.

While analysing the results of nowcasting, we found many accurate
predictions of the bacterial abundances, which confirmed the presence
of interconnections within the bacterial community members and rela-
tionship between the environmental factors and bacteria. For the most
abundant bacteria, the trained models demonstrated high IA values,
even reaching 0.90. Interestingly, for Solibacterales (class Acidobacteriia,
phylum Acidobacteria (Martiny et al., 2005)) the model could make ac-
curate predictions for lines 1, 2, and 4, whereas for line 3 the IA value
dropped to 0.40 (Fig. 1). For the period of 5.7.2017-19.7.2017, rapid
growth in the amount of Solibacterales was observed in line 3, in con-
trast to other lines where there was no sudden or large increase in the
amount of this bacterium for the entire observational period (Fig. 5).
This might be because of faulty measurements gathered in line 3 or
due to ignoring some influential factors which could cause this rapid

change. The reason for this is that the ignored factors were not included
in the set of potential predictors or that they were not chosen by the
learning algorithm as relevant predictors. Poor IA values were also ob-
tained for two other less abundant groups: Planctomycetales (class
Planctomycetacia, phylum Planctomycetes) and Chloroplast (class
Oxyphotobacteria, phylum Cyanobacteria). Although Chloroplasts are
parts of plants and do not relate to bacteria, they are often extracted
when sequencing. While Chloroplasts are typically removed from the
analysis, in our study, we deliberately retained this group since it
might be an informative predictor for the amount of bacteria in the
community (Wang et al., 2018a). Indeed, this predictor has a moderate
importance based on the analysis we carried out (Supplementary mate-
rial 4). However, the predicted abundance of Chloroplasts is not as accu-
rate as the predicted abundances of bacteria.

The other essential conclusion concerning nowcasting is that the dis-
infectant pumped is a more significant factor than the pipe material re-
garding the model performance. This implies that for nowcasting
bacterial abundances in a newly monitored DWDS, models trained on
data collected from pipelines with the same disinfection should be ap-
plied. The possible way to enhance the accuracy of predictions is to in-
volve data describing the bacterial community in pipelines made of
the same material. The combination of two training samples leads to
higher IA values (Fig. 2). Nevertheless, from the practical point of
view, nowcasting does not allow estimations of bacterial abundances
for the future, which is necessary to control risks and prevent WBOs,
therefore, forecasting is required.

Although the quality of 7-day predictions appeared to be worse than
for nowcasting (Fig. 3), there were still some bacteria, for which the RF
model could achieve 0.70-0.80 of IA. For one of the most abundant bac-
teria, namely Rhizobiales, the best IA values varied from 0.74 to 0.92 for
different lines. It was shown in another study that the Rhizobiales order
tends to dominate other bacteria in copper pipelines (Inkinen et al.,
2016). Wang et al. (2018b) also reported that Rhizobiales was the
most abundant group in samples taken from a full-scale DWDS in east-
ern China.

For Pseudanabaenales the highest IA value averaged over the lines
surpassed the level of 0.80. However, a further analysis revealed that
the IA was equal to 0.95, 0.91, 0.49, and 0.90 for lines 1, 2, 3, and 4, cor-
respondingly. The reason for the poor IA for line 3 was that the model
overestimated the bacterial abundance heavily: in other lines, much
more dramatic increases in the amount of Pseudanabaenales were ob-
served (Fig. 5). Another study reported that the Pseudanabaenales
order was one of the most abundant bacteria in water samples from
Lake Zurich used as a source of drinking water (Monchamp et al., 2016).

For seven more bacteria, the averaged IA value exceeded 0.70. The
least accurate predictions were made for Planctomycetales (class
Planctomycetacia, phylum Planctomycetes) and Caulobacterales (class
Alphaproteobacteria, phylum Proteobacteria): for which the IA did not
surpass the level of 0.40 (Li et al., 2010). However, by making many
quite accurate predictions, we have demonstrated the potential of fore-
casting in DWDS and have highlighted the existing limitations related to
the data quality and its completeness.

As opposed to nowcasting, the pipe material becomes a more signif-
icant factor for crossline modelling than disinfection. This should be
taken into account first while selecting the training samples. Using
data which matches both criteria, the same pipe material and the
same disinfection, is even more beneficial. This conclusion also corre-
sponds to the one drawn for nowcasting. However, these conclusions
should be investigated deeply with data from full-scale experiments
where the disinfection is usually applied constantly for a long time
over years. In real world cases the pipelines also operate for many
years so the pipe effect may vanish over time.

Furthermore, the analysis of the most important predictors for the 7-
day forecasting showed that the physicochemical variables had the
highest importance on average. This supports many existing studies
which discuss the influence of pH (Ratzke and Gore, 2018), temperature
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(Jinetal,, 2018), and Cu (Ladomersky and Petris, 2015) on the microbial
population (Stanish et al., 2016). Nevertheless, due to the complex in-
teractions in the community, the set of important predictors for each
bacterium includes a number of specific variables, which are relevant
only for a particular species (see in Supplementary material 4, Fig. 1).
Apparently, knowledge-based preselection of possible predictors
might create limitation for the learning algorithm and add bias to the
model (Tomperi and Leiviskd, 2018).

Accurate long-term predictions are practically helpful in managing
risks of contamination. They allow less frequent measurements and
consequently they reduce the costs of monitoring. However, increasing
the prediction horizon complicates the forecasting problem and affects
the accuracy of predictions (see in Supplementary material 5, Fig. 2).
Therefore, another approach based on a chain of short-term forecasts
should be tested as an alternative to the presented one: the predicted
bacterial abundances might be used as model inputs to make “next-
step” predictions.

To summarize our findings with respect to the practical employment
of the RF model, we would like to emphasize the following points:

* In crossline modelling, training data is recommended to include sam-
ples from pipelines made of the same material and with the same dis-
infection as the pipeline, to which the model will be applied.

* In addition to bacterial abundances, physicochemical variables such as
pH, Cu, and temperature should be considered as the most important
predictors.

» 7 days is the reasonable prediction horizon for RF. The 30-day fore-
casting does not estimate the bacterial abundances that accurately.

In further experiments, biofilm samples should be involved in the
modelling to describe the investigated bacterial community thoroughly
(Liu et al,, 2012). Furthermore, a longer observational period should en-
able more data to be collected and would make the training samples
more informative.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.137249.
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