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Amyloidoses are a group of diseas =~ ' ° °  rmal fibrillar proteins accumulate &s
amyloid in the patients’ tissues. Familial amyloidosis of the Finnish type, FAF, a
dominantly inherited amyloid disease, is characterized by corneal lattice dystrophy,
polyneuropathy, and skin changes. FAF is caused by a point mutation in gelsolin, an
actin-modulating protein, which exists in intracellular and secreted forms. The FAF
amyloid protein consists of internal peptides of gelsolin with the disease-causing mutation
at Aspigr.

In the studies on which this thesis is based, the first initial step in the pathogenesis of FAF
at the cellular level was elucidated. We showed that expression of secretory mutant FAF
gelsolin in different cell types results in the generation of an aberrant polypeptide, which
most likely represents the precursor protein for FAF amyloid. Secretory mutant FAF
gelsolin was cleaved to FAF amyloid precursor in most of the cell types studied, even in
the absence of gelsolin; only adult human fibroblasts and monocytes could not process
the mutant FAF gelsolin. Most of the mutant FAF gelsolin was cleaved to the FAF
amyloid precursor by neuronal cells, which might suggest that these cells could have a
special role in the tissue pathogenesis of FAF. We suggest that lack of the disulfide bond
normally present in the wild-type secretory gelsolin leads to initial abnormal folding of
the mutant gelsolin polypeptide and its aberrant proteolytic processing to the FAF
amyloid precursor. In the cell lines studied, intracellular FAF gelsolin was not
proteolytically cleaved either to the FAF amyloid precursor or the FAF amyloid, which
suggests that the FAF mutant secretory form of gelsolin is the source of the amyloid in
FAF. We also showed that the FAF mutation does not disturb the normal actin-
modulating function of intracellular gelsolin. This suggests that, in patients with FAF the
symptoms are apparently caused by accumulation in the tissues of amyloid derived from
the secreted gelsolin, and not by the disturbed function of the mutant intracellular
gelsolin.



REVIEW OF THE LITERATURE
1 AMYLOIDOSIS AND AMYLOID
1.1 Amyloidoses

The amyloidoses are a heterogeneous group of disorders characterized by deposition of
insoluble abnormal protein fibrils as amyloid in the extracellular spaces of tissues,
causing organ damage (Glenner 1980). Amyloidoses include many disorders such as
cancer, Alzheimer’s disease, and familial amyloid polyneuropathy. The diseases may be
hereditary or acquired. The systemic amyloid deposits involve multiple organs of the
body, whereas in other amyloid diseases the amyloid is localized to a single organ
(reviewed by (Sipe 1994)). The different amyloid diseases in humans are summarized in
Table 1.

The amyloidoses are classified according to the disease-specific fibril protein. The current
nomenclature for amyloid fibril proteins was established in 1990 (Husby et al. 1990). To
date, if lactoferrin and the amyloid protein in Familial British dementia (ABri) are also
accepted as amyloid proteins, at least 20 different amyloid proteins have been identified
in humans (Table 1) (Westermark 1999; Vidal et al. 1999). The first amyloid fibril
protein to be identified, immunoglobulin light chain (AL), was purified from tissues of
patients with AL amyloidosis associated with multiple myeloma and plasma cell disorders
(Glenner et al. 1971; Glenner 1980). The amyloid A protein (AA) is a proteolytic
cleavage product of the circulating acute-phase reactant serum amyloid A (SAA) (Benditt
et al. 1971; Levin et al. 1973; Levin et al. 1972). AA amyloidosis is caused by an
inflammatory stimulus, for example in rheumatoid arthritis (Table 1). Many localized
amyloid deposits in endocrine tissues are derived from polypeptide hormones: calcitonin,
islet amyloid polypeptide (IAPP) or amylin, atrial natriuretic factor derived amyloid
(ANF), insulin and prolactin. The majority of these polypeptide hormone-derived
amyloids consist of full-length proteins, although fragments of the full-length precursor
have been found, for example in the case of prolactin amyloid (Table 1) (reviewed by
(Westermark 1994)), (Hinton et al. 1997). Beta-2 microglobulin amyloid deposition
occurs in patients with chronic dialysis. The deposition of amyloid results from decreased
excretion of beta-2 microglobulin and the amyloid protein is deposited typically in the
intact full-length form (Table 1). However, in a few cases, truncated forms of beta-2
microglobulin have been found in the amyloid deposits (Stoppini et al. 2000).

In some cases, a mutation in the precursor protein for amyloid may lead to an amyloid
disease. Such mutations have been found in hereditary forms of amyloidoses such as
transthyretin, gelsolin, apolipoprotein Al, cystatin C, the amyloid precursor protein
(APP), lysozyme, fibrinogen and prion protein associated amyloidoses. . .c.. cwmnn
forms of some of these pr - iple transthyretin g ) can also form
a 7 blel).
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The term amylod m: ~ _“ ™ ' 7 " ' " by Rudolf Virchow in the
1850s. It is still in use, despite the fact that it soon became clear that the major component
of amyloid deposits is protein ((Virchow 1851; Friedreich and Kekule 1859) referred by
(Sipe 1994)). A specific feature of all amyloid deposits is their affinity for Congo red
stain and the typical green birefringence of amyloid when viewed under polarized light.
This histologic test for the identification of amyloid is still widely used, reviewed in (Sipe

1994).

In addition to their tinctorial properties, the various amyloid proteins also share structural
similarities. Electron microscopic studies have shown the organized fibrillar ultrastructure
of amyloid (Cohen and Calkins 1959). The cross-beta-pleated sheet conformation of
amyloid proteins was determined by X-ray diffraction analyses (Eanes and Glenner
1968). In this structure, the adjacent polypeptide chains are folded with antiparallel
orientation and perpendicularly to the axis of the fibril (Glenner 1980; Sipe 1994) (Fig.

1.

Cross B-fibril

NN
- NN
- o~ A
-+
Lamellar stacking
Y YV NaN
Polypeptide strand
Fiber axis

Figure 1. Cross-beta pleated structure of amyloid. The polypeptides of the amyloid
fibrils are arranged in an anti-parallel orientation perpendicularly to the axis of the fibrils.
Lamellar stacking allows for the fibril breadth (7-10 nm). Adapted from (Kelly and
Lansbury Jr 1994). ‘

The detailed structure of the amyloid fibrils is still unknown because amyloid is non-
crystalline and insoluble in aqueous solution. Solid state NMR, X-ray diffraction, electron

11
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microscopy and computational studies have been used to analyze the molecular structure
of amyloid (Kelly 1996). However, the crystal structures of several wild-type forms of
precursor proteins for amyloid, for example transthyretin, beta-2-microglobulin,
lysozyme, plasma gelsolin, and transthyretin- and lysozyme variants causing amyloidosis
have been solved (Blake et al. 1978; Becker and Reeke Jr 1985; Artymiuk and Blake
1981; Burtnick et al. 1997; Hamilton et al. 1993; Terry et al. 1993; Funahashi et al. 1996;
Booth et al. 1997).

The tissue pathology varies between the different amyloid diseases. In familial amyloid
polyneuropathy, amyloid deposits have been found, for example, in the spleen, the heart,
the vitreous of the eyes, the thyroid and the adrenal glands, whereas in Alzheimer’s
disease, for example, localized cerebral amyloid deposits are involved (Gillmore et al.
1997). The “amyloid hypothesis” — the putative cause-and-effect relationship between
amyloid deposition and the onset of the amyloid disease — although strongly supported by
data of different studies, is not yet proven (Kelly 1998).

In addition to the individual amyloid protein (see Table 1), the amyloid deposits in tissues
also contain apolipoprotein E, glycosaminoglycans (GAG) and the amyloid P component
(SAP). These and other common elements found associated with amyloid deposits are
discussed in Section 1.3.2.

1.3 Pathogenic mechanisms in amyloidogenesis
1.3.1 Fibrillogenesis

Amyloid fibril formation is an in vivo process in which a normally soluble human
amyloidogenic protein is converted into an insoluble amyloid (Kelly 1996). Thus, the
amyloidoses can also be viewed as a group of “protein folding diseases” (Westermark
1998). The exact mechanisms underlying the fibril formation are unknown. It has been
proposed that polymerization of amyloid fibrils requires the formation of a nucleus or a
nidus, after which the process occurs rapidly (Jarret and Lansbury 1993). Assembly of an
amyloidogenic protein into amyloid fibrils involves several fibrillogenic intermediates,
including amyloid protofibrils, which grow slowly. For fibril formation to occur, an
adequate concentration of the intermediate is needed. When the appropriate concentration
is reached, the fibrils are rapidly converted into amyloid fibrils (Lansbury 1999). For
example, point mutations can predispose the precursor protein for amyloid toward
formation of the protofilaments by destabilizing the normal structure of the protein, as has
been shown for transthyretin and for lysozyme mutants (Lashuel et al. 1998; Booth et al.
1997) (Fig. 2).
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Figure 2. Schematic representation of the major factors contributing to
amyloidogenesis. SAP = serum amyloid P component, AEF = amyloid enhancing factor,
ApoE = apolipoprotein E, GAG = glycosaminoglycans. This figure is based on the
references discussed in the text.
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Amyloid deposits are, by definition, extracellular. However, some cytoplasmic inclusions
like the intracellular neurofibrillary tangles found in the brains of patients with
Alzheimer’s disease, have several of the properties of extracellular amyloid (Westermark
1999). An interesting, but so far unsolved, question in amyloid research is whether in
systemic amyloidosis amyloid fibril formation begins intra- or extracellularly
(Westermark 1994). It has been suggested that in experimental AA-amyloidosis the first
fibrils are formed in lysosomes (Shirahama and Cohen 1975). In addition, intracellular
amyloid formation has been described in some polypeptide-hormone-derived
amyloidoses, reviewed in (Westermark 1994). Intracellular amyloid deposits, released
into the extracellular space by exocytosis or cell death, have been found in human
insulinomas (O'Brien et al. 1994). Overexpression of human IAPP or amylin in COS-1
cells results in intracellular amyloid deposits that induce apoptosis (O'Brien et al. 1995;
Hiddinga and Eberhardt 1999). Intracellular amyloid has also been found in neurons
infected with Semliki Forest viruses encoding for the human wild-type or amyloidosis-
associated mutant APP (Tienari et al. 1997). '

1.3.2  Factors affecting fibrillogenesis

Pathogenesis of amyloidosis is influenced by several factors (Fig. 2). It appears that an
amyloidogenic amino acid sequence is necessary for amyloid formation to occur.
However, no uniform amyloidogenic amino acid sequence has been characterized.
Alterations in the amino acid sequence of a protein by mutation can make the protein
more susceptible to proteolysis or a non-amyloidogenic protein more amyloidogenic
(Kisilevsky and Fraser 1997). For example, a single amino acid substitution has been
shown to accelerate fibril formation by the mutant AP peptide carrying the mutation
found in the Dutch type of hereditary cerebral hemorrhage with amyloidosis (Wisniewski
et al. 1991). A mutation could also affect the protein’s tissue- or cell-specific affinity or
function (Kisilevsky and Young 1994). Another important factor in fibrillogenesis, as
shown in in vitro experiments, is the local concentration of the fibril precursor (Jarret and
Lansbury 1993). A number of precursors show increased synthesis, while decreased
clearance of B-2 microglobulin can also lead to amyloidosis (Table 1). However, other
factors, in addition to the amyloidogenic amino acid sequence and the concentration of
the fibril precursor, are needed for amyloid formation to occur (Kisilevsky and Fraser
1997).

Multiple tissue components may contribute to amyloid formation. All the amyloid
deposits studied, for example, consist of apolipoprotein E, which might act as a
pathological chaperone in fibrillogenesis by inducing a B-pleated sheet conformation
(Wisniewski and Frangione 1992). During the initial stages of fibrillogenesis, SAP and
glycosaminoglycans may be im=~~~=+ ¥isjlevsky and Young 1994) (Fig. 2). In addition,
environmental changes, such ¢ . local pH, may be important for amyloid fibril
formation, as has been shownfor,_ = *° °~ °~  Tlatnaswamy et al. 1999) (Fig. 2).

Amyloid P component (AP), which is pre: .. - of amyloid, is a glycoprotein
that is identical to the norm . ,-asma protein, serum amyloid P component
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(Ges4A/T) secretory gelsolin cDNAs were further subcloned to a pCD- ression

vector with the SV-40 early promoter (Okayama and Berg 1983), a pAdPsy-
LTRSVpolyA vector with Rous sarcoma virus promoter containing the adenoviral
sequences needed for homologous recombination (Strafford-Perricaudet et al. 1992), and
a Moloney murine leukemia virus-based retrovirus vector pM48 with phosphoglycerate
kinase promoter (Moullier et al. 1993) (I-IV).

The change of nucleotide Ggsg to C (CysigsSer) was performed with a Chameleon™
double-stranded, site-directed mutagenesis kit (Stratagene) according to the
manufacturer's instructions on pCD-X expression vectors containing either the wild-type
(Ggsa) or the FAF mutant (GessA) secretory gelsolin cDNA (III).

2 CONSTRUCTION OF EXPRESSION VECTORS FOR INTRACELLULAR
GELSOLIN

To obtain the intracellular gelsolin cDNAs, the pCD-X vector cor ir the
wild-type (Ggsa) or the FAF mutant secretory gelsolin (G, ) Narl
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The gelsohn pM48 constructs were cotransfected into the mouse NIH3T3 fibroblast-
de - T ' zing cells (L d Mulligan 19 o, ctor by
lipofectin transfection (Felgner et al. 1987) and the transfected cells were selected with
500 pg/ml G418. Clones producing recombinant retroviruses encoding for the wild-type
or mutant forms of intracellular or secretory gelsolin were identified by PCR and Western
blotting, after which the best producer clones were expanded (IV).

5§ CELL CULTURE, TRANSFECTION AND TRANSDUCTION

African green monkey kidney cell line COS-1 (ATCC CRL 1650), the mouse fibroblast
cell line NIH3T3 (ATCC CRL 1658), the primary human fibroblast cell line, the mouse
NIH fibroblast-derived CREBAG2 (Danos and Mulligan 1988) and hepatocarcinoma cell
lines (Hep2c) were cultrured in Dulbecco’s modified Eagle's medium (DMEM) (GIBCO)
supplemented with 10% fetal calf serum (FCS). The Madin-Darby canine kidney cell line
(MDCK) (ATCC CCL 34) and the human lung carcinoma cell line (A549) (ATCC CCL
185) were cultured in modified Eagle’s medium supplemented with 5% or 10% FCS.
@CRIP cells were cultured in DMEM supplemented with 10% newborn calf serum.
GSN/ mouse embryonic fibroblasts (GSN'EF) were derived from embryos of gelsolin
knock-out mice (Witke et al. 1995) and cultured on dishes coated with 50 pg/ml poly-D-
lysine. AGA”/" mouse embryonic fibroblasts (AGA'EF) were derived from E14 embryos
of mice with homozygous disruption of the aspartylglucosaminidase gene (Jalanko et al.
1998) and cultured on dishes coated with 0.1% gelatin. GSN'EF and AGA'EF cells were
maintained in DMEM supplemented with 15% FCS. Undifferentiated rat
pheochromocytoma PC12 cells (ATCC CRL 1721) were cultured on dishes coated with a
1:40 dilution of Matrigel and in RPM1 1640 medium (GIBCO) supplemented with 10%
normal horse serum and 5% FCS. For differentiation, a medium with 1% horse serum and
50 ng/ml nerve growth factor was used. All media were supplemented with 2 mM L-
glutamine, 100 IU/ml penicillin, and 50 mg/ml streptomycin (I-IV).

Primary human schwannoma cell cultures were derived from the trigeminal schwannoma
of a 15-year-old male and from the vestibular schwannoma of a 59-year old female, as
published earlier (Kaasinen et al. 1995). Human macrophages and monocytes were
obtained as described by (Ronni et al. 1997). Human neuronal progenitor cells were
obtained from a legal abortion of an 8-week-old fetus and cultivated as described by
(Buc-Caron 1995) with addition of dibutyryl cyclic AMP (1mM) to the culture medium
(11I).

COS-1 cells were transfected with the gelsolin-pCD-X constructs (Gess, GesaA/T) with
lipofectin or DEAE-Dextran and chloroquine methods (Felgner et al. 1987; Luthman and
Magnusson 1983). Two days after transfection, a serum-free medium was added, and
after incubation for 6-20 h, the medium was collected and the cells were harvested by
trypsinization (I-III). To study the enzymatic processing of gelsolin, transfected cells
were incubated for 2-10 h in a serum-free medium supplemented with EDTA (1.2-10
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For retroviral infections, cells were infected 10 s with 3
ml of the recombinant retrovirus supernatant : 1 in the
presence of 8 ug/ml of polybrene. The transduc the growth
medium for several passages. One day prior to collect e medium was
added. All media were supplemented with 2 mM L-glutamine, 100 IU/ml penicillin, and
50 mg/ml streptomycin (IV).

For exogenous delivery of mutant gelsolin polypeptides, culture media derived from
MDCK cells expressing FAF mutant secretory gelsolin were incubated with non
transduced fibroblast or monocyte cell cultures for 8 - 20 hours.

To inhibit proteases, EDTA, PMSF, aprotinin, or E-64c was used when collecting of the
samples after transfection or transduction (I-IV).

6 PATIENT AND CONTROL SAMPLES

Patient and control samples of CSF (cerebrospinal fluid) and plasma were obtained from

Dr. Sari Kiuru and Dr. Seppo Kaakkola as described in (Paunio et al. 1994) (I, II).

7 GELSOLIN SPECIFIC ANTIBODIES

To obtain the NH951 antibody, the cDNA coding for the ami of gelsolin
(coding for amino acids 1-172) was amplified by PCR and s pGEX-2T-
glutathione —S transferase fusion vector (Amersham ™ °° ' ssion in
E.coli. To obtain the COOH961 antibody, the 10 acids
420-755) in a pCD-X vector was digested with into the
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Polyclonal AM904 (anti-am) rabbit antiserum was raised against gelsolin fragments
extracted from amyloid in the tissues of a patient with FAF (Haltia et al. 1990a). Rabbit
antiserum 777" ' gainst a synthetic peptide of a " sidues 231 717 ~F
gelsolin. Monoclonal anti-gelsolin (GS-2C4) (Sigma) ar ) gnizes a ¢ ,
peptide derived from a chymotryptic cleavage of gelsolin extending to the
carboxyterminus of the protein (Chaponnier et al. 1986). Figure 10 in the results section
shows the target regions of the gelsolin-specific antibodies (I-IV).

8 METABOLIC LABELING, IMMUNOPRECIPITATION, AND WESTERN
BLOTTING

For metabolic labeling of proteins, the transfected or infected cell cultures were incubated
in cysteine- and methionine-free medium for 30 min, labeled with a mixture of 100
pCi/ml of *°S cysteine and 100 pCi/ml of *>S methionine (labeling media) for 30 min—2 h,
and chased for different time periods in a serum-free medium. In some experiments the
cell cultures were incubated for 2-4 h at 20°C to inhibit the transport of proteins from the
trans-Golgi network (Saraste and Kuismanen 1984). The cells and media were collected,
the cells were lysed by freeze-thawing, and the media were concentrated by Centricon 3-
30 (Amicon). Immunoprecipitations were carried out either with monoclonal anti-gelsolin
antibody or with a mixture of polyclonal AM904 (anti-am) and COOH961 antibodies,
using protein G- or A-Sepharose, respectively. The immunoprecipitated polypeptides
were separated on a 9 or 14% SDS-PAGE and visualized by fluorography using Amplify
reagent (Amersham) (I-1II).

For Western blotting, the cell lysates or cell culture media from the transfected or infected
cells were analyzed on a 7, 9, 14 or 15% SDS-PAGE and blotted onto Hybond-C
cellulose membranes (Amersham). For immunoblotting analyses, monoclonal anti-
gelsolin or different polyclonal gelsolin specific antibodies (see Fig. 10) were used.
Enhanced chemiluminescence (ECL) or the ProtoBlot Western Blot AP System
(Promega) was used for the final detection of the polypeptides (I-IV).

9 GELSOLIN PEPTIDE DELIVERY TO PC12 CELLS

PC12 cells were infected with recombinant adenoviruses encoding for the wild-type or
FAF mutant secretory gelsolin. Two days after infection, the cells were starved for 30 min
in unlabeled cysteine- and methionine-free media, after which 20 or 50 uM gelsolin
peptide (GSN 150-169) was added to the labeling media (described in section 8) and
incubated with the cells for 15 min. Addition of the 20 or 50 uM peptide was repeated for
another 15 min, after which the polypeptides in the cell lysates and culture media were
immunoprecipitated as described above in section 8.

10 IMMUNOFLUORESCENCE- AND IMMUNOCYTOCHEMICAL
STAININGS

For immunofluorescence or immunocytochemical stainings, the cells were grown on
either uncoated, poly-D-lysine-coated (GSN'EF cells), or Matrigel-coated (PC12 cells)
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1 TE M OF GELSOLIN IS P \
A , . )

~

To analyze the process’ _ Lo " n cells, African green
monkey kidney cells (COS-1) were transfected with pCD-X expression vectors
containing the cDNA encoding for the wild-type or FAF mutant forms (Aspig;Asn/Tyr)
of secretory gelsolin. The cell lysates and the corresponding media were analyzed by
Western blotting or immunoprecipitation analysis, using different gelsolin-specific
antisera (I, IT) (Fig. 10).

1 173 243 755
/4

// S-GSN~ 83 kDa
/4
/4

/4 GSN-c68 ~ 68 kDa
/4
| NH951 |anti-am | anti-gelsolin Antisera

572 | COOH961

=FAF amyloid
* =FAF mutation Asp,g,Asn/Tyr

Figure 10. Schematic representation of secretory gelsolin, the FAF amyloid region,
the GSN-c68 and GSN-NH, cleavage fragments of mutant secretory gelsolin and the
regions used for raising the gelsolin-specific antibodies. S-GSN = secretory gelsolin,
GSN-c68 = the 68 kDa cleavage fragment of gelsolin representing the FAF amyloid
precursor, GSN-NH, = the 15-25 kDa aminoterminal cleavage fragment of gelsolin.

The full-length 83 kDa gelsolin polypeptide was secreted into the culture media by COS-
1 cells expressing the wild-type form of gelsolin. In contrast, an aberrant 68 kDa gelsolin
polypeptide (GSN-c68) in addition to the full-length 83 kDa polypeptide was secreted
into the culture medium by cells expressing the FAF mutant (Asn;g; or Tyrig;) gelsolin
(Fig. 11). About 15-40% of the mutant gelsolin was cleaved to the GSN-c68 polypeptide
(I). This polypeptide could be identified with K572, anti-am and anti-gelsolin antibodies,
but not with the NH951 antibody, which suggested that it carried the FAF amyloid
sequence at its aminoterminus and might thus represent the precursor protein for FAF
amyloid (I, II) (Fig. 10). This was confirmed by aminoterminal sequencing, which
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revealed that the first amino acid residue of this fragment is alanine L (ID),

the first amino acid of FAF tissue amyloid. Only full-length gelsolin e cell
extracts of cells expressing the wild-type or mutant secretory gelsol FAF-
amyloid was not detected in the cell extracts or the medium of the g the

mutant forms of secretory gelsolin (I).

COS-1
| ~ I

©

c M~

[o0]

2 <<

T T W

O <« <

Figure 11. Processing of secretory gelsolin in COS-1 cells. COS-1 cells were
transfected with pCD-X expression vector encoding for the secretory mutant gelsolin
(Asnl87) or infected with adenoviruses encoding for the secretory forms of wild-type
(Ad-wt) or mutant (Ad-Asnl87) gelsolin and the media were analyzed by Western
blotting using the anti-gelsolin antibody. The 83 kDa full-length gelsolin is found in the
media of cells expressing the wild-type and FAF mutant secretory gelsolin and the 68
kDa polypeptide (GSN-c68), indicated by an arrow, only in the media of cells expressing
mutant FAF gelsolin. 0 = background of COS-1 cells (1, II).

The GSN-c68 fragment was secreted from the cells at the same rate as the normal full-
length gelsolin, as shown by pulse chase analysis (I, II). GSN-c68 was not detected in the
extracts of cells expressing mutant FAF gelsolin when the cell cultures were incubated at
20°C, a temperature which prevents the protein transport from the trans-Golgi network
(Saraste and Kuismanen 1984). When the medium containing mutant FAF gelsolin was
collected and further incubated at +37°C, the proportion of GSN-c68 did not increase (I).

To inhibit fragmentation of the mutant gelsolin to GSN-c68, different protease inhibitors
were added to the culture medium of the wild-type or mutant gelsolin expressing cells.
Interestingly, the metalloprotease inhibitors EDTA and phenanthroline diminished the
fragmentation of mutant gelsolin to GSN-c68 from 35% to 5% auu to 10-15%,

respectively. Phosphoramidion, which inhibits many bacterial pr * but only a few
talloendoproteinases of mammalian origin (Beynon and S 1990), did not
ibit the cleavage of mutant gelsolin to GSN-c68. Neither « nor serine nor
vartic acid protease inhibitors affected the processing of 1 * " to GSN-c68
60 kDa carboxyterminal cleavage fragment of gelso um

) ", 7 _ZSF) of patients with FAF ( :

, 5-70 kDa gelsolin fragment h: _ ents
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with FAF (Paunio et al. 1994). Immunoblotting analysis showed that the 60 kDa fragment
N ~7 7 "8 (I) but that the higher molecular """ ° T mntT )

«

most likely corresponds to the GSN-c68 fragment (IT) (Figs. 4 and 10 ).

2 “ELLUL: A OF | 7
AN DPF~ """ """ (1L IV)

FAF mutation is shared by both the intracellular and the secretory forms of gelsolin (Fig.
5). To study whether the intracellular mutant FAF gelsolin also contributes to the amyloid
formation in FAF, COS-1 cells were transfected with expression vectors encoding for the
intracellular wild-type or FAF mutant forms (Asn/Tyr;g7) of gelsolin. The cells and media
were analyzed by Western, immunoprecipitation, or immunofluorescence analysis (II).

Both the wild-type and the FAF mutant forms of gelsolin were similarly and
homogeneously distributed througout the cytoplasm of transfected COS-1 cells, based on
immunofluorescence analysis. Western analysis revealed that the gelsolin polypeptide
staining patterns of the wild-type and FAF mutant gelsolin-expressing cell cultures were
identical. The 80 kDa band corresponding to the full-length intracellular gelsolin was
detectable with all the gelsolin-specific antibodies used. Some smaller fragments of
gelsolin were also detected, but none of them were specific for either the wild-type or the
mutant forms of gelsolin. In particular, no polypeptides corresponding to the size or
immunospecificity of GSN-c68 or FAF amyloid was detected in these analyses (II).
Further, the intracellular mutant FAF gelsolin was not cleaved to GSN-c68 or FAF
amyloid in the gelsolin-null fibroblasts transduced with the recombinant retroviruses
encoding for the wild-type or FAF mutant intracellular gelsolin (IV).

3 THE DISULFIDE BOND BETWEEN CYSTEINES 188 AND 201 OF
GELSOLIN IS CRUCIAL FOR THE NORMAL PROCESSING OF
SECRETED GELSOLIN (I1I)

The results of the expression analysis of FAF mutant secretory and intracellular gelsolin
raised an interesting question why only the mutant secreted and not the intracellular
gelsolin gets aberrantly cleaved. A disulfide bond is located in the immediate vicinity of
the FAF mutation site (Asp;g7) between amino acids 188 and 201 in the secretory, but not
in the intracellular, gelsolin (Wen et al. 1996) (Fig. 9). To study whether the abnormal
processing of mutant FAF gelsolin to GSN-c68 might result from disruption of this
disulfide bond, we introduced a Cys;ssSer mutation into the expression plasmids
encoding for the wild-type or FAF mutant secretory gelsolin and expressed them in COS-
1 cells (II).

A truncated 68 kDa polypeptide, which corresponded in size and immunoreactivity to
that of the GSN-c68 fragment in Western analysis, was secreted, in addition to the full-
length 83 kDa gelsolin polypeptide from the cells transfected with either of the two
plasmids containing the Cys;ggSer mutation. About 30% of the mutant (Asp;s;Ser;gs and
Asnjg;Serigg) gelsolin was cleaved to the 68 kDa GSN-c68-like polypeptide. This
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S1nce neuropathy is a characteristic feature of FAF, analyses of the processing of FAF
o " cells of neurc ; considered of special interes* Only 0-7%

1

)

of mutant FA' __ .. . . ..ved in human schwannoma cell cultures :rived from
two patlents whereas the majority (60-90%) of the mutant FAF gelsolin w  cleaved to
FAF o jor by both undifferentiated and nerve growth factc. induced rat

pheochromocytoma PC12 cells. In addition, GSN-c68 and GSN-NH, fragments were
found in both the medium and the cell extracts of mutant gelsolin expressing PC12 cells.
In primary cultures of human telencephalic progenitor cells, most of the FAF gelsolin was
also cleaved to the FAF amyloid precursor (Fig. 10). No signs of endocytosis of GSN-c68
polypeptides were observed in pulse chase analysis of PCI12 cells. Only full-length
gelsolin was detected in the transduced cells expressing mutant FAF gelsolin in
temperature block analysis, in which the proteins were restricted from exiting the trans-
Golgi network at 20°C (Saraste and Kuismanen 1984). The fragmentation of mutant FAF
gelsolin to GSN-c68 could be inhibited by EDTA, although the concentration needed for
inhibition was higher in PC12 cells (III) than in COS-1 cells (I). The cellular distribution
of EDTA taken from the medium into cells is not completely known. It seems likely that
EDTA could inhibit extracellular metalloendoproteases but the capacity of EDTA to
inhibit proteases in different cellular compartments remains unknown.

The intracellular distribution of both the wild-type and the FAF mutant secretory gelsolin
were identical in the nerve growth factor-induced PC12- or human neuronal progenitor
cells. Gelsolin immunostaining was seen in the soma, along the processes and at the tip of
the extensions. In PC12 cells, the gelsolin immunostaining pattern most closely
resembled that of immunostaining with synaptophysin, a presynaptic marker. PC12 cells
and human neuronal progenitor cells expressing the secretory wild-type or FAF mutant
gelsolin were morphologically similar and no signs of induced cell death were observed
in the cells expressing mutant gelsolin (IIT).

5 FAF MUTATION DOES NOT DISTURB THE NORMAL ACTIN-
MODULATING FUNCTION OF GELSOLIN (1IV)

Although it is known that the intracellular mutant FAF gelsolin is not aberrantly
processed to FAF amyloid precursor (II), the consequences of the FAF mutation for the
functioning of intracellular gelsolin have been unknown. Since the FAF mutation is
located on a functionally active region of gelsolin (Table 3), we decided to study the
function of mutant intracellular gelsolin in cell cultures. GSN'EF cells were infected with
recombinant retroviruses encoding for the intracellular (or secretory) wild-type or FAF
mutant (Asn;g;) gelsolin, and the actin network was monitored with Oregon green 488
phalloidin staining (IV).

Immunostaining of gelsolin polypeptides showed that the intracellular wild-type and
mutant FAF gelsolins were equally distributed in the GSNEF cells. Intracellular gelsolin
was distributed mainly perinuclearly and more faintly throughout the cytoplasm, whereas
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1 PATHOGENESISC. __.__ __ ____ _____ULAR__  __

During this thesis work we were able to elucidate some important issues concerning the
cellular pathogenesis of FAF. The most important findings of these studies can be
summarized as follows:

» Proteolytic processing of secretory mutant FAF gelsolin is the most important event in
the molecular pathogenesis of FAF,

e The normal formation of the disulfide bond in the immediate vicinity of the FAF
mutation site of gelsolin seems to be crucial for the normal processing of the polypeptide.

o FAF tissue amyloid is solely derived from secretory gelsolin. Further, the role of
different cell types varies in the tissue pathogenesis of FAF and neurons seem to have a
significant role in the generation of FAF amyloid precursor.

e The actin-modulating function of intracellular mutant FAF gelsolin appears to be
normal.

This novel data is discussed in more detail in the following sections.

1.1  Proteolytic processing of FAF gelsolin (I-1V)

L.1.1 The cleavage of mutant FAF gelsolin to FAF amyloid precursor during
intracellular secretion

Proteolytic processing of the precursor proteins for amyloid seems to be a critical factor
in the disease pathogenesis in many forms of amyloidosis (Table 1). Here, we studied the
proteolytic processing of mutant FAF gelsolin in various cell types.

The present results show that, in contrast to wild-type secreted gelsolin, mutant FAF
gelsolin (Asnyg; or Tyrg;) was cleaved to an aberrant 68 kDa polypeptide (GSN-c68) in
COS cells. Studies using different antibodies and amino-terminal aminoacid sequencing
of this fragment confirmed that it carries the FAF amyloid sequence at its aminoterminal
end and thus most likely represents the immediate precursor protein for FAF amyloid and
the 60 kDa fragment found in patients’ serum (I, IT) (Fig. 10 and 12). This first cleavage
of FAF gelsolin is most probably a prefibrillogenic event and triggers the pathological
cascade of events ultimately resulting in accumulation of tissue amyloid and FAF.
Alternative processing of the precursor protein for amyloid has been shown, not only for
gelsolin, but also APP. Cells expressing APP carrying the LysgoAsnMets;1Leu double
mutation secrete more AP than wild-type cells (Citron et al. 1992). Other mutations in
APP (Valy7) cause enhanced production of the longer Ap (1-42) peptide, while cells
expressing the wild-type APP mainly produce the AP (1-40) peptide (Suzuki et al. 1994).
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In addition, it was recently shown that wild-type APP is mostly cleaved by caspase-3,
whereas mutant APP (LysgpAsnMetqs;Leu) is cleaved by caspase-6 (Gervais et al. 1999),

FAF amyloid precursor (GSN-c68) was not detected in the cells expressing mutant
gelsolin (I, II1) when protein transport to trans-Golgi network was stopped (Saraste and
Kuismanen 1984). Nor did the proportion of this precursor increase when the medium
containing mutant secretory FAF gelsolin was incubated at 37°C. These observations
suggest that the first cleavage of mutant secretory gelsolin to FAF amyloid precursor
most likely occurs after trans-Golgi network, during secretion into the media or on the
cell membrane (I) (Fig. 12). The location of the FAF gelsolin-processing enzyme may
thus be restricted solely to the secretory pathway. The cleavage of mutant FAF gelsolin to
GSN-c68 was not inhibited when PC12 cells expressing mutant FAF gelsolin were
incubated with the gelsolin peptide (GSN150-169), which competes with gelsolin for the
binding to PPIs/PIP,. This suggests that interaction of mutant gelsolin with
polyphosphoinositides is not needed for the cleavage of the mutant FAF gelsolin to the
FAF amyloid precursor (Paul Janmey and H. Kangas, unpublished results).

1.1.2  Engymatic processing of mutant FAF gelsolin to FAF amyloid precursor

The enzyme(s) responsible for the first proteolytic cleavage of mutant FAF gelsolin to
FAF amyloid precursor is/are unknown. To analyze the type of protease involved in the
pathologic processing of mutant FAF gelsolin, various protease inhibitors were added to
the culture medium of cells expressing mutant FAF gelsolin (I). None of the cysteine,
serine, or aspartic protease inhibitors used in this study could inhibit the cleavage of
mutant FAF gelsolin to GSN-c68. However, EDTA and phenanthroline, which inhibit
various metalloproteases, diminished the production of GSN-c68 markedly (I). Structural
analysis of wild-type gelsolin segment 1 complexed with actin has suggested that the FAF
mutation at amino acid 187 of gelsolin could cause local rearrangements to the gelsolin
structure, leaving amino acid 172 more accessible to proteolytic cleavage by trypsin-like
proteases (McLaughlin et al. 1993). Our demonstration of the novel cleavage site between
amino acids 172-173 of gelsolin (II) is in accordance with these structural studies,
although the present results suggest that the cleaving enzyme might be a
metalloendoprotease (I). Since EDTA was able to diminish the cleavage of mutant
gelsolin to GSN-c68 in PC12 cells (II1), the results suggest that metalloendoproteinases
might be involved in the cleavage of mutant FAF gelsolin in the neuronal cells also.

Proprotein convertases (PCs) are a family of enzymes involved in the intracellular
endoproteolytic processing of a variety of protein precursors at specific sites. Some of
these PCs can cleave precursors in the constitutive secretory pathway at the level of the
trans-Golgi network or cell surface (Seidah and Chrétien 1997) and are thus potential
candidates for the mutant FAF gelsolin-processing enzymes. Recently, it was shown that
processing of the precursor protein for familial British dementia (BRI) to amyloidogenic
ABri peptides is mediated by the proprotein convertase furin (Kim et al. 1999).
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1.1.3  The second cleavage of mutant FAF gelsolin to FAF amyloid

Our data on Western analysis suggest that GSN-c68 can be found not only in the cell
cultures, but also in the CSF of patients with FAF (II). A 65 kDa gelsolin fragment
detected in the plasma of homozygous FAF patients has been suggested to represent this
same carboxyterminal cleavage product of gelsolin (Maury et al. 1997) (Fig. 4). At some
stage after secretion, a second putative cleavage at the carboxyterminus of the amyloid-
forming region of this fragment at amino acid 244 or 247 is likely to produce the FAF
amyloid protein (amino acids 173-243) and the 60 kDa gelsolin polypeptide also found in
patients’ serum and CSF (Sunada et al. 1994; Maury 1991b; Paunio et al. 1994) (I, IT)
(Figs. 4, 10, and 12). Alternatively to serum, the second cleavage of mutant FAF gelsolin
to FAF amyloid could occur during transport to the circulation or during incorporation of
the mutant gelsolin into the extracellular matrix. FAF amyloid deposits can be stained not
only with the FAF amyloid-specific antibody, but also with a monoclonal antibody raised
against the carboxyterminal, nonamyloid-forming part of gelsolin (Haltia et al. 1990b;
Kiveld et al. 1994). This might indicate that mutant gelsolin or fragments of it are
codeposited with FAF amyloid or that the final processing to the FAF amyloid occurs
locally (Kiveld et al. 1994). Post-fibrillogenic processing of the amyloid precursor has
been demonstrated, for example, in AA-amyloidosis (Kisilevsky et al. 1994).

The two disease-associated forms of gelsolin (Asn;g; and Tyr;g7) were similarly processed
in COS-1 cells, which indicates that the initial cellular mechanisms underlying the
pathogenesis of the two molecular subtypes of FAF are similar (I). This is not surprising,
since the clinical findings in patients' carrying either of these mutations closely resemble
each other (Meretoja 1969; Boysen et al. 1979). In addition to creating the novel
proteolytic cleavage site in gelsolin, FAF mutation also increases the fibrillogenic
potential of gelsolin, as has been shown with mutant Asn;g; synthetic gelsolin peptides.
However, synthetic gelsolin peptides carrying the Tyr;s; mutation required an acidic
milieu to form amyloid, while Asn;g; peptides formed amyloid-like fibrils even in water
(Maury et al. 1994). It is not clear whether this difference has any biological significance.
Interestingly, it has been shown that both the wild-type and the mutant (Asn;g;) gelsolin
fragments consisting of the amyloid-forming region of gelsolin (GSN 173-243) formed
fibrils in acidic, but not in physiological, conditions (Ratnaswamy et al. 1999). Thus, the
nonamyloidogenic nature of the wild-type gelsolin in humans seems to result from the
resistance of the protein to proteolysis. The destabilization of the structure of gelsolin by
the FAF mutation and subsequent proteolysis of gelsolin leads eventually to the formation
of FAF amyloid fibril. This might occur in an acidic organelle such as in endosome or
lysosome or via the intermediacy of the extracellular matrix (Ratnaswamy et al. 1999).
However, we have never detected endosomal- or lysosomal-like staining in
immunofluorescence analysis of cells expressing FAF mutant gelsolin (I-IV).

1.1.4 The role of mutant intracellular FAF gelsolin in the formation of amyloid

Although amyloid deposits are defined as extracellular, it is not definitively known
whether fibril formation is initiated intra or extracellularly. Intracellular amyloid has been
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found, for example, in human insulinomas and in neurons infected with Semliki Forest
viruses encoding for the wild-type or mutant APP (O'Brien et al. 1994; Tienari et al.
1997) (see also section 1.3.1). In some amyloid diseases, fibrillogenesis might thus
initially be an intracellular event, followed by release of the amyloid fibrils into the
extracellular space after cell death. Since FAF mutation is shared by both the intracellular
and secretory forms of gelsolin, it was of special interest to us to analyze the role of the
mutant intracellular FAF gelsolin in amyloid formation and in the pathogenesis of the
disease. We found that there was no difference between the processing or cellular
distribution of the wild-type and the FAF mutant forms (Asnig; or Tyrisy) of intracellular
gelsolin in COS-1 cells or embryonic gelsolin knock-out fibroblasts (II, IV). Especially,
the mutant intracellular gelsolin was not proteolytically processed to GSN-c68 or to FAF
amyloid in these cells. Our results strongly indicate that intracellular mutant FAF gelsolin
does not contribute to the formation of amyloid in FAF, the sole source of the amyloid
being the secretory form of gelsolin (IL, IV) (Fig. 12).

FAF amyloid deposits have been found in most tissues of the patients, but especially
attached to the blood vessel walls and basement membranes of most organs (Meretoja and
Teppo 1971). In FAF, the origin of the gelsolin peptides in the amyloid deposits is
unknown. They may arise from the circulating plasma gelsolin, but local synthesis is also
possible, especially because gelsolin is synthesized in so many tissues. Local production
of mutant gelsolin may cause the characteristic skin amyloidosis in FAF, as high levels of
gelsolin are expressed in the skin (Paunio et al. 1997). In addition, local production may
contribute to the corneal amyloid deposits (Kiveld et al. 1994). It has also been suggested
that local production of amyloidogenic gelsolin by vascular smooth muscle cells may be
related to the FAF-related cerebral amyloid angiopathy (Kiuru et al. 1999). FAF amyloid
deposits have not been reported from the brain parenchyma (Meretoja and Teppo 1971).
Dementia is not common in FAF, but it does occur, probably as a result of some other
unrelated disease (Haltia et al. 1991; Kiuru 1998). It has been shown that only
intracellular gelsolin, but not plasma gelsolin, is expressed in the rat brain (Vouyiouklis
and Brophy 1997). Since intracellular mutant FAF gelsolin seems not to be processed to
the FAF amyloid precursor (II, IV), the absence of the secretory FAF amyloid precursor
might explain the absence of FAF amyloid in patients’ brains. In situ hybridization
studies with human brain tissue would be useful in analyzing this interesting issue.

1.1.5 The significance of the disulfide bond between cysteines 188 and 201 of
gelsolin for the processing of secretory gelsolin

The formation of the disulfide bond between cysteine residues in a polypeptide chain
often stabilizes the three-dimensional structure of extracellular proteins (Alberts et al.
1994). A disulfide bond is formed next to the FAF mutation site between amino acids 188
and 201 in the secretory, but not in the intracellular, form of gelsolin (Wen et al. 1996).
The restriction of proteolytic processing to the mutant secretory form of gelsolin might be
a consequence of the localization of the enzyme(s) responsible for the first cleavage of the
mutant FAF gelsolin solely in the secretory pathway. The FAF mutation might also
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disturb the formation of the disulfide bond in the secretory mutant gelsolin. We
demonstrated that secretory gelsolin, carrying the in vitro constructed Cys;gsSer mutation,
was processed similarly to FAF gelsolin in COS-1 cells. A 68 kDa polypeptide, which
corresponded in size and immunoreactivity to that of the GSN-c68 fragment, was secreted
by these cells. This would suggest that the disulfide bond between cysteines 188 and 201
is not properly formed in the secretory mutant FAF gelsolin. Therefore, we hypothesize
that lack of the disulfide bond could lead to the abnormal initial folding of the mutant
gelsolin polypeptide, making it susceptible to aberrant proteolytic cleavage during
secretion producing the FAF amyloid precursor fragment (Fig. 12). However, it was
recently shown, with a gelsolin segment two polypeptide, that the disulfide bond can form
correctly in this truncated form of gelsolin despite the FAF mutation (Isaacson et al.
1999). Similar proportions, (about 30%) of the Cys;ssSer mutant and FAF mutant gelsolin
were cleaved by COS-1 cells, which was most probably due to insufficient capacity of the
gelsolin cleaving enzyme(s) in these cells overexpressing the mutated proteins (III).
However, it should be noted that it has not been shown whether the disulfide bond really
exists in the full-length mutant FAF gelsolin molecule. It is also possible that the serine
mutation in the wild-type gelsolin polypeptide (III) does not hamper the disulfide bond
formation, but rather as such may cause defective folding of the polypeptide, making it
susceptible to proteolytic cleavage, and producing the 68 kDa GSN-c68-like polypeptide.

Although our results strongly indicate that the disulfide bond between cysteines 188 and
201 is not present in the full-length secretory FAF gelsolin (III), it is possible that these
cysteines have a role in the later processing steps of GSN-c68 to FAF amyloid (III). They
might help to stabilize the FAF amyloid, as has been suggested on the basis of the three-
dimensional structure of horse plasma gelsolin (Burtnick et al. 1997). For fibrillin, for
example, it has been proposed, that rearrangement of the inter or intramolecular disulfide
bonds could occur after secretion of the protein into the extracellular matrix (Sakai et al.
1991). Rearrangements of this kind could also occur for mutant FAF gelsolin
polypeptides.

1.1.6  The production of FAF amyloid precursor in neurons

Interestingly, our results show that processing of the mutant secretory FAF gelsolin to
GSN-c68 varies according to the cell types. Thus, the amount or activity of mutant FAF
gelsolin-processing enzyme may be different in different cell types. In the majority of the
cells, mutant secretory FAF gelsolin was cleaved to FAF amyloid precursor, but the
amount of the precursor varied from 5 to 90% (I-IV). Only a fraction of the secretory
mutant FAF gelsolin was processed to FAF amyloid precursor in the schwannoma cells
representing the glial cells of the peripheral nervous system. However, most (60-90%) of
the secretory mutant FAF gelsolin was cleaved to GSN-c68 in both undifferentiated and
nerve growth factor-induced rat pheochromocytoma (PC12) cells, the classical model of
the neuronal lineage. The GSN-c68 and GSN-NH, fragments of gelsolin were detected
both in cell lysates and in the media. Furthermore, in primary cell cultures of human
telencephalic progenitor cells, secretory mutant FAF gelsolin was extensively cleaved to
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GSN-c68. Since large amounts of mutant gelsolin was processed to the FAF amyloid
precursor in cells of neuronal origin, it seems likely that a constantly high level or activity
of the gelsolin cleaving enzyme(s) is present in these cells (ITT).

In PC12 cells, as in COS-1 cells the first cleavage of mutant gelsolin to GSN-c68
occurred after passage through trans-Golgi network and the proteolytic processing could
be inhibited with EDTA (I, III). This suggests that the mechanisms leading to the
generation of the FAF amyloid precursor in nonneuronal and neuronal cells are similar.
No sign of increased cell death or morphologic differences were observed in the nerve
growth factor-induced PC12 cells expressing wild-type or mutant secretory gelsolin. In
immunocytochemical stainings of these cells, gelsolin colocalized perhaps best with
synaptophysin, a presynaptic marker, which might suggest that gelsolin is secreted from
the presynaptic region of neurons (III). However, analysis of the cellular site of secretion
of gelsolin (dendrites, axon, or soma) would be important to confirm this hypothesis. In
conclusion, our findings suggest a significant role for neurons when compared to other
cell lines studied (I-IV) in generating the precursor protein for FAF amyloid and perhaps
in the subsequent accumulation of FAF amyloid in the cornea close to the trigeminal
nerve endings and peripheral nerves (III). In addition to FAF amyloidosis, a special role
for neurons in generating the precursor protein for amyloid has been reported for APP. A
difference between the processing of wild-type and mutant APP has been observed in
neurons and astrocytes. Wild-type APP is processed to AP in neurons but not in
astrocytes while mutant APP is processed to AP in both cell lines (Macq et al. 1998).

1.1.7  The production of FAF amyloid precursor in non-neuronal cells

Approximately 10-30% of the mutant FAF gelsolin was cleaved to GSN-c68 in cells of
renal, hepatic and lung origin. The GSN-NH; fragment was occasionally found in the cell
culture medium of canine kidney cells and human lung carcinoma cells. Adult fibroblasts
and monocytes seem not to have a significant role in generating FAF amyloid, since
mutant FAF gelsolin was not apparently cleaved to FAF amyloid precursor in these cells
(I11, IV). Our results indicate that, in contrast to the situation in adult human fibroblasts,
the enzyme(s) responsible for the first cleavage of mutant FAF gelsolin to FAF amyloid
precursor are present in embryonic mesenchymal cells. Mutant FAF gelsolin was cleaved
to GSN-c68 in embryonic mouse fibroblasts in which the proportion of GSN-c68 was
relatively high, 45%. In addition, GSN-c68 was found both in the culture medium and
cell extracts of embryonic mouse fibroblasts. Moreover, the GSN-NH, fragment was also
secreted from these cells. FAF gelsolin was similarly cleaved to GSN-c68 in mouse
embryonic gelsolin knock-out fibroblasts. This indicates that wild-type gelsolin is not
needed for the proteolytic processing of mutant FAF gelsolin to the FAF amyloid
precursor (IV), as can also be concluded from the existence of two homozygous FAF
patients (Maury et al. 1992). Our results also suggest that the underlying disease
mechanism in FAF is different from the prion diseases or AA-amyloidosis, in which the
amyloid formation may start from the endogenously expressed precursor protein in the
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presence of triggering molecules such as prion or amyloid enhancing factor (Kisilevsky
and Fraser 1997).

FAF amyloid was never detected in neuronal or non-neuronal cell cultures expressing
mutant FAF gelsolin. This could indicate that the enzyme responsible for the second
cleavage of the FAF amyloid precursor to FAF amyloid was not synthesized in the cell
lines used. Or additional environmental factors, such as changes in the pH or addition of a
nidus (for example mutant gelsolin peptides) to the cell cultures, might be needed for
FAF amyloid formation to occur in cell cultures.

1.2  Function of FAF gelsolin (IV)

Although our results strongly imply that the mutant intracellular FAF gelsolin is not
involved in the actual formation of amyloid in FAF (II), we were interested in studying
the effect of the FAF mutation on one of the major functions, namely the actin-
modulating function, of intracellular gelsolin. The FAF mutation is located in a
functionally active area of gelsolin, on segment 2, which is involved, for example, in F-
actin binding, severing and capping (Yin and Stossel 1979; Yin et al. 1980; Yin et al.
1981) (Fig. 9, Table 3). Gelsolin knock-out fibroblasts (GSN'EF) provided us with an
ideal background for studying the actin-modulating function of the intracellular mutant
FAF gelsolin in vivo (IV).

Confocal microscopic studies showed that intracellular wild-type and FAF mutant
gelsolin were similarly distributed in the GSN'EF cells around the nucleus and throughout
the cytoplasm. In the majority of the nontransduced GSN'EF cells, actin filament staining
was strong and prominent and the filaments were organized as characteristic stress fibers.
In contrast, in the majority of the transduced GSNEF cells expressing either wild-type or
FAF mutant gelsolin, the actin filaments were weak and thin or the cells had no filaments
at all (IV). This result was most probably due to the actin-severing activity of
recombinant gelsolin. Since the actin filament staining was similar in the wild-type and
FAF mutant intracellular gelsolin-expressing GSN'EF cells, it appears that the FAF
mutation does not disturb the actin-modulating function of gelsolin in these cells (IV).

It has recently been reported that overexpression of a carboxyterminally truncated wild-
type but not the FAF mutant plasma gelsolin prevented neural sprouting in neural crest-
derived Paju cells (Westberg et al. 1999). This was proposed to be due to the defective
actin-severing activity of mutant cytoplasmic gelsolin (Westberg et al. 1999). Curiously,
conclusions were drawn from the function of intracellular gelsolin, although the
constructs used in that study were derived from carboxyterminally truncated plasma
gelsolin, apparently containing the signal sequence. However, it is possible, that the actin-
modulating function of mutant FAF gelsolin might be different in neuronal and non-
neuronal cells and that, in different cell types and tissues, the pathogenic mechanisms
underlying FAF may vary.
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It has been shown with plasma samples from homozygous patients with FAF that FAF
mutant plasma gelsolin has defective actin-severing and nucleating activity in vitro
(Weeds et al. 1993). This could be due to the abnormal fragmentation of the mutant
plasma gelsolin in the analyzed samples. It is also possible that while the function of the
intracellular FAF gelsolin remains intact (IV) the lack of the disulfide bond in the plasma
gelsolin (III) could result in the abnormal folding of the mutant gelsolin molecule and
thus influence its normal actin-severing and nucleating activity.

Studies with gelsolin knock-out mice have shown excessive actin stress fibers in adult
dermal fibroblasts, defects in platelet shape changes causing prolonged bleeding time,
defects in the inflammatory response, and migration of leucocytes and dermal fibroblasts
(Witke et al. 1995), while the major clinical findings in patients with FAF are
ophthalmologic, neurologic, and skin changes (Meretoja 1969; Kiuru 1992). It is possible
that putative malfunction of intracellular mutant FAF gelsolin might be compensated by
another member of the gelsolin family with functional similarity to gelsolin. However,
even if some other protein were able to compensate for the function of gelsolin in cells,
the patients’ symptoms would still be expected to be more severe if the function of
mutant intracellular gelsolin were impaired. Thus, on the basis of our results it appears
that the symptoms of the patients with FAF are caused by the accumulated tissue
amyloid, and not by the disturbed function of mutant intracellular gelsolin (IV).
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CONCLUDING REMARKS AND FUTURE PROSPECTS

This study was carried out to clarify the disease mechanisms underlying FAF at the
cellular level. We have shown that the secretory mutant FAF gelsolin is abnormally
processed by proteolysis to FAF amyloid precursor in various cells. This is the initial
cellular step which initiates the pathological cascade of events that ultimately results in
FAF. The first cleavage most likely occurs at some phase during the secretion pathway
after the trans-Golgi network but before secretion from the cell and seems not to involve
interaction of polyphosphoinositides with mutant FAF gelsolin. Neither is wild-type
gelsolin needed for the cleavage of FAF gelsolin. The initial disease mechanism
underlying the “Finnish” and “Danish” types of gelsolin-related amyloidosis (with Asng;
and Tyr;g; —mutation respectively) seems to be similar. A second putative cleavage of
FAF amyloid precursor at amino acid residue 244 is likely to create the FAF tissue
amyloid (amino acid residues 173-244 of gelsolin) and the 60 kDa cleavage fragment
detected in the serum of patients. The second cleavage of mutant FAF gelsolin to FAF
amyloid has not been defined so far and may occur during incorporation of the mutant
gelsolin into the extracellular matrix, in the serum, or during transport of the mutant
protein into the circulation.

The enzyme(s) responsible for the first proteolytic cleavage of FAF gelsolin remain
unknown. Our results suggest that metalloendoproteases might be involved in the
aberrant processing, but other enzymes such as trypsin-like proteases or proprotein
convertases, are putative candidates as well. Intracellular FAF gelsolin is not cleaved to
FAF amyloid precursor, which suggests that the FAF tissue amyloid is derived from the
secretory FAF gelsolin. This might also indicate that the enzyme responsible for the first
cleavage of FAF gelsolin is located in the secretory pathway. The activity or amount of
the proteolytic enzyme varies with the different cell types, although the cleavage
mechanism is likely to be similar in all types of cells. Future challenges of FAF research
include the characterization of the enzymes responsible for the two cleavages of secretory
mutant FAF gelsolin.

We found that the cleavage of mutant FAF gelsolin to FAF amyloid precursor was most
effective in neurons when compared to other cell lines studied. This result might at least
partially explain the accumulation of amyloid around peripheral nerves. In addition, the
composition of the extracellular matrix might also contribute to the FAF amyloid
deposition in neurons. Despite the findings of the present study revealing some particular
features of neurons in the processing of mutant FAF gelsolin to FAF amyloid precursor,
characterization of the true role of these cells in the pathogenesis of FAF would need
further investigation in the future. Analysis of the cellular site of secretion of gelsolin in
neurons and more detailed analysis of different cell types (e.g. blood cells, epithelial cells,
muscle cells) and tissues (e.g. biopsy samples of patients with FAF) in the disease
pathogenesis would be interesting in solving this issue. Moreover, transgenic animals
expressing mutant FAF gelsolin under the control of a neuron-specific or ubiquitous
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promoter could be utilized to further analyze the significance of neuronal and non-
neuronal cells in the tissue pathogenesis of FAF.

The formation of the disulfide bond between cysteines 188 and 201 of secretory gelsolin
is apparently essential for its normal initial folding. We suggest that the lack of the
disulfide bond in mutant secretory gelsolin predisposes the polypeptide to the aberrant
cleavage producing the FAF amyloid precursor. Stabilization of the gelsolin structure
near the mutation and disulfide sites might prevent the pair of cleavage steps that result in
the formation of the FAF amyloid (Janmey et al. 1998). However, it should be noted that
it is not known whether the disulfide bond really exists in the full-length FAF gelsolin
molecule. This could be analysed by resolving the crystallized structure of the secreted
full-length mutant FAF gelsolin molecule. Less laborous techniques for analyzing the
disulfide bond structure of the mutant FAF gelsolin molecule might involve the peptide
mapping and mass spectrometric analysis which were originally developed for disulfide
structure analysis of wild-type gelsolin (Wen et al. 1996).

The gelsolin peptides in the FAF amyloid deposits may arise from the circulating plasma
gelsolin but local synthesis in tissues like cornea, peripheral nerves, and skin is also
possible. An interesting subject of future FAF research would be to analyze the pattern of
expression of intracellular and secreted gelsolin in the brain. The putative lack of
secretory FAF amyloid precursor in the brain might explain the lack of FAF amyloid in
the brain parenchyma of patients with FAF. The FAF mutation seems not to interfere with
the normal actin-modulating function of mutant intracellular gelsolin. This suggests that
what causes the symptoms in patients with FAF is accumulation of tissue amyloid derived
from the secreted gelsolin. However, the pathogenic mechanisms underlying FAF may
vary in different cell types and tissues.

The gelsolin-expressing cell lines could be useful for initiation of the development of
antisense therapy for FAF with antisense oligonucleotides or ribozymes. Our preliminary
results, however, suggest that inhibition of the expression of the gelsolin gene with
antisense oligonucleotides would require extensive screening of a wide variety of
antisense oligonucleotides to find a potent inhibitor of gelsolin expression. The cell lines
described here might be useful in testing different molecules which could inhibit the
function of the yet unknown enzyme(s) responsible for the first cleavage of the mutant
FAF gelsolin. Development of an animal model for FAF would be an important goal in
the future as it would be essential for testing possible therapies. Since a gelsolin null-
mouse already exists (Witke et al. 1995) it might be possible to use these mice for
production of transgenic mice which would express mutant FAF gelsolin. The novel
information from such studies could provide a basis for the development of patient
therapy.
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