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ABSTRACT 

Urban air particulate pollution is currently regarded as the most harmful 
environmental exposure causing premature mortality in Europe. Thoracic 
particles (PM10; diameter <10 μm) and fine particles (PM2.5; diameter <2.5 μm) 
have been consistently associated with excess mortality and morbidity among 
susceptible population groups e.g. individuals with chronic respiratory or 
cardiovascular disease. In addition to size and lung dose, the chemical 
composition of inhaled particles has been hypothesized as being an important 
determinant of the adverse health outcomes. Inflammation has been regarded as 
the most important biological mechanism mediating the health effects of urban 
air particles in subjects with cardio-respiratory diseases. The main objective of 
the present thesis was to improve understanding of the immunotoxic properties 
of urban air particles and their association with potentially harmful sources and 
chemical compositions. 

A series of sampling campaigns were conducted in six European cities 
during contrasting air pollution situations in different seasons. Particulate 
samples for toxicological studies were collected in 7-week sampling campaigns 
using a high volume cascade impactor (HVCI) that consisted of four consecutive 
stages for coarse (PM10-2.5), intermediate (PM2.5-1), accumulation (PM1-0.2) and 
ultrafine (PM0.2) size-range particles. The size-segregated particulate mass, 
collected on polyurethane foam strips and backup filter, was extracted with 
methanol and pooled together according to size range and respective sampling 
location. In most studies, the mass in two of the size ranges, PM2.5-1 and PM1-0.2 
was pooled together to form one fine particulate (PM2.5-0.2) sample per campaign. 
Extensive inorganic and organic chemical analyses were made from the pooled 
HVCI samples. These were complemented with analysis results from samples 
collected with parallel low-volume samplers. This permitted the use of the 
chemical mass closure method in the characterization of the gravimetrically 
measured, size-segregated particulate mass of the HVCI samples used in 
toxicological studies. These results and well-established chemical tracers were 
utilized in the identification of potentially harmful particulate sources. 
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Inflammatory properties of the HVCI particulate samples were investigated 
in an immortalized mouse macrophage cell line (RAW264.7). They were 
assessed by measuring the production of proinflammatory cytokines (IL-6, 
TNFα) and chemokine (MIP-2) by macrophages exposed to the particulate 
samples. Nitric oxide production was also measured. Cell viability, apoptosis 
and the stage of the cell cycle of the macrophages were analyzed as indicators of 
cytotoxicity. 

Toxicity profiles of the samples collected during different air pollution 
situations in Helsinki varied extensively. The overall toxicity of the PM1-0.2 mass 
per cubic meter of air during transnational forest fire smoke episodes was 
estimated as being higher than the seasonal average in springtime. 

The particulate samples in PM10-2.5 size range were the most potent inducers 
of inflammation and cytotoxicity. However, the air pollution situation strongly 
affected the particle-induced responses in six European cities. There was more 
heterogeneity in the toxic responses in association with the PM2.5-0.2 than the 
PM10-2.5 samples. In both size ranges, the responses were mainly due to the 
insoluble fraction of the particulate samples with only minor effects by the 
water-soluble or organic solvent soluble fractions. The PM0.2 samples did not 
substantially increase cytokine production, but some samples exhibited cytotoxic 
and apoptotic activity. This suggests that the solubility and the chemical 
composition of the particulate material affect the toxic potency and that the 
material in different particulate size ranges can activate distinct biological 
mechanisms.  

There were a larger number of statistically significant positive or negative 
correlations between the chemical constituents, and the inflammatory and 
cytotoxic activity of the HVCI samples in the fine particulate than the coarse 
particulate size-range. The inflammatory activity of the PM2.5-0.2 samples had 
high positive correlations with tracers of photo-oxidation of the organic material 
in the atmosphere (dicarboxylic acids), some transition metals (Ni, V, Fe, Cu, 
Cr), as well as soluble (Ca2+) and insoluble (Ca, Al, Fe, Si) soil constituents. In 
contrast, markers of incomplete biomass combustion (monosaccharide 
anhydrides) and coal combustion (As), and the PAH-compounds displayed high 
negative correlations with the inflammatory parameters, but not with 
cytotoxicity. The chemical compositions of PM10-2.5 samples were more uniform 
than those of the PM2.5-0.2 samples. Possibly due to this reason, there were only 
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occasional high correlations between the chemical constituents, endotoxins, and 
the toxicological response parameters. 

The present studies strengthen the concept that local emission sources, 
climate and season affect the toxicity of urban air particles via the chemical 
composition. The most important particulate sources for toxicity were 
incomplete biomass and coal combustion, oil combustion, resuspended road dust 
and the long-range transported forest fire smoke. 
 

Keywords: Air pollution, particulate matter, macrophage, inflammation, 
cytotoxicity, cell cycle, particulate sources, particle size, particulate solubility, 
chemical composition, chemical mass closure 
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TIIVISTELMÄ 

Kaupunki-ilman hiukkaset lisäävät merkittävästi ennenaikaista 
kuolleisuutta ja niitä pidetäänkin nykyisin kaikkein haitallisimpana 
ympäristöaltisteena Euroopassa. Kaupunki-ilman hengitettävien hiukkasten 
(PM10; läpimitta <10µm) ja pienhiukkasten (PM2.5; läpimitta <2.5 µm) 
pitoisuudet ovat olleet yhteydessä herkkien väestöryhmien, kuten sydän- ja 
hengityssairaiden, lisääntyneeseen kuolleisuuteen ja sairastavuuteen. Koon ja 
keuhkoannoksen lisäksi hiukkasten kemiallisten ominaisuuksien on arveltu 
olevan tärkeä tekijä terveyshaittojen synnyssä. Tulehdusta pidetään tärkeimpänä 
hengitys- ja sydänsairauksien pahenemisen biologisena mekanismina. 
Väitöstutkimuksen päätavoite oli lisätä tietoa kaupunki-ilman hiukkasten 
immunotoksisista ominaisuuksista ja niiden yhteyksistä päästölähteisiin ja 
hiukkasten kemialliseen koostumukseen.  

Hiukkaset kerättiin eri vuodenaikoina ja erilaisista ilmanlaatutilanteista 
kuudessa eurooppalaisessa kaupungissa. Hiukkasnäytteet toksikologisiin 
tutkimuksiin kerättiin 7 viikon keräysjaksojen aikana suurtehokeräimellä 
(HVCI) neljässä kokoluokassa: karkeat hiukkaset (PM10-2.5), välikokoiset 
hiukkaset (PM2.5-1), kertymähiukkaset (PM1-0.2) ja ultrapienet hiukkaset (PM0.2). 
Kokoluokiteltu hiukkasmassa kerättiin polyuretaanivaahtoliuskoille ja 
pohjasuodattimille, joista se uutettiin metanolilla. Jokaisen kaupungin näytteet 
yhdistettiin kokoluokittain. Useimmissa osatutkimuksissa PM2.5-1 ja PM1-0.2 
kokoluokkien hiukkasmassat yhdistettiin yhdeksi mittauskampanjakohtaiseksi 
pienhiukkasnäytteeksi (PM2.5-0.2). Yhdistetyistä HVCI-hiukkasnäytteistä tehtiin 
laaja epäorgaaninen ja orgaaninen kemiallinen analyysi, jota täydennettiin 
analyyseillä samaan aikaan pientehokeräimillä kerätyistä hiukkasnäytteistä. 
Tämän ansiosta kemiallisen massasulkeuman menetelmää voitiin käyttää eri 
yhdisteiden tunnistamisessa hiukkasnäytteistä, joita käytettiin toksikologisissa 
tutkimuksissa. Näitä tuloksia ja tunnettuja kemiallisia merkkiaineita käytettiin 
todennäköisesti haitallisten päästölähteiden tunnistamisessa.  
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Tässä tutkimuksessa selvitettiin HVCI-hiukkasnäytteiden 
tulehdusvaikutuksia hiiren makrofagisolulinjassa (RAW 264.7). Tutkimuksessa 
mitattiin altistettujen solujen tuottamia proinflammatorisia sytokiineja (TNFα, 
IL-6) sekä kemokiinia (MIP-2). Myös solujen tuottama typpioksidi mitattiin 
soluviljelynesteestä. Solujen elävyys, apoptoosi ja solusykli mitattiin 
solutoksisuuden osoittajina. 

Helsingistä keväällä kerättyjen hiukkasnäytteiden toksiset ominaisuudet 
poikkesivat toisistaan erilaisissa ilmanlaatutilanteissa. Metsäpalosavujen 
kaukokulkeuman aikana ilmakuutiossa olleen PM1-0.2 hiukkasmassan toksisuus 
arvioitiin suuremmaksi kuin samana vuodenaikana keskimäärin. 

Kaikissa mittauskampanjoissa PM10-2.5 hiukkaset tuottivat voimakkaimmat 
tulehdus- ja solutoksisuusvasteet. Kuudesta eurooppalaisesta kaupungista 
kerättyjen HVCI-näytteiden aiheuttamat soluvasteet vaihtelivat kuitenkin 
selvästi ilmanlaatutilanteen mukaan. PM2.5-0.2 näytteiden tuottamissa 
soluvasteissa oli enemmän eroja keräyspaikkojen välillä kuin PM10-2.5 näytteiden 
vasteissa. Molemmissa kokoluokissa HVCI-näytteiden vaikutukset 
makrofageihin aiheutuivat pääosin liukenemattomasta hiukkasjakeesta. Vedellä 
ja orgaanisella liuottimella liuotetut jakeet aiheuttivat vain pieniä, pääosin 
merkityksettömiä soluvasteita. PM0.2-näytteet eivät merkittävästi lisänneet 
sytokiinien tuotantoa, mutta jotkut näistä näytteistä aiheuttivat merkittävää 
akuuttia solutoksisuutta sekä apoptoosia. Tulosten perusteella voidaan päätellä, 
että hiukkasmassan liukoisuus ja kemiallinen koostumus vaikuttavat 
toksisuuteen ja että eri kokoluokkien hiukkaset voivat aktivoida erilaisia 
biologisia mekanismeja. 

Kemiallisilla tekijöillä oli pienhiukkaskokoluokassa selvästi useammin 
tilastollisesti merkitsevä korrelaatio HVCI-näytteiden tulehdus- ja 
solutoksisuuspotentiaalin kanssa kuin karkean kokoluokan hiukkasnäytteillä. 
PM2.5-0.2 näytteiden tulehdusaktiivisuudella oli korkea positiivinen korrelaatio 
ilmakehän orgaanisten yhdisteiden foto-oksidaation merkkiaineiden 
(dikarboksyylihapot), joidenkin siirtymämetallien (Ni, V, Fe, Cu, Cr) sekä 
liukoisten (Ca2+) ja liukenemattomien (Ca, Al, Fe, Si) maaperän aineiden kanssa. 
Sitä vastoin biomassan huonon polton merkkiaineilla (monosakkaridianhydridit), 
hiilenpolton merkkiaineella (As) ja PAH-yhdisteillä oli korkea negatiivinen 
korrelaatio PM2.5-0.2-näytteiden tulehdusaktiivisuuden, mutta ei solutoksisuuden 
kanssa. PM10-2.5 näytteiden kemiallinen koostumus vaihteli vähemmän 
keräyspaikkojen välillä kuin PM2.5-0.2 näytteiden koostumus. Mahdollisesti tästä 
syystä karkeiden hiukkasten kemiallisen koostumuksen, mukaan lukien 
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endotoksiini, ja havaittujen toksisuusvasteiden välillä oli vain satunnaisia 
merkitseviä korrelaatioita. 

Tämä väitöstutkimus vahvistaa käsitystä siitä, että paikalliset päästölähteet, 
ilmasto ja vuodenaika vaikuttavat kaupunki-ilman hiukkasten toksisiin 
ominaisuuksiin kemiallisen koostumuksen kautta. Tulehdus- ja solutoksisten 
vaikutusten kannalta tärkeimpiä hiukkaslähteitä olivat epätäydellinen biomassan 
ja hiilen poltto, öljynpoltto, liikenteen nostama katupöly sekä kaukokulkeutunut 
metsäpalosavu. 

 

Asiasanat: Ilmansaasteet, hiukkaset, makrofagi, tulehdus, solutoksisuus, solusykli, 
hiukkasten lähteet, hiukkaskoko, hiukkasten liukoisuus, kemiallinen koostumus, 
kemiallinen massasulkeuma 
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1 INTRODUCTION  

Particulate air pollution is one of the most important health concerns worldwide. It has been 

estimated that within European Union countries, particulate air pollution is responsible for up 

to 350 000 premature deaths annually and an average of 8 months’ loss of statistical life 

expectancy, which is mainly due to life years lost by cardiorespiratory patients (up to 10 yrs) 

(EU/CAFE, Directive 2008/50).  

In epidemiological studies, the focus has been on the effects associated with three size 

ranges: coarse (PM10-2.5; particle diameter 10<Dp<2.5 µm), fine (PM2.5;, Dp<2.5 µm) and 

ultrafine particles (Dp<0.1 µm). The epidemiological data suggest that fine particulate 

material in most cases is more harmful to human health than coarse particles. However, there 

is recent evidence, which suggests that coarse particles can also significantly affect morbidity. 

Ultrafine particles have been studied to a lesser extent in epidemiology, but their health 

effects seem as detrimental as those of fine particles. It is noteworthy that epidemiological 

studies have rarely included particle collection for chemical and source analysis (WHO 2005). 

Particulate air pollution can cause a large variety of health consequences, but clearly 

cardiac and respiratory morbidity and associated mortality are the most serious. The adverse 

health effects are accentuated in susceptible population groups, including subjects with 

chronic respiratory and cardiac diseases, children and the elderly. Furthermore, certain types 

of cancers are associated with particulate air pollution via genotoxicity, mutagenicity or 

secondary mechanisms related to inflammation and cytotoxicity. Air pollution can also be 

associated with impaired pregnancy outcomes and infant mortality. Inflammation and 

associated cytotoxicity are regarded as the main mechanisms in air pollution-related health 

effects in chronic respiratory and cardiovascular diseases. Several other mechanisms and 

organs can be involved in the particulate air pollution-associated health effects. These include 

loss of ciliary or surfactant functions in the lung, cell proliferation and angiogenesis, 

interstitial protein functions, nervous system damage etc. 

In urban environments, the major local sources are traffic related air pollution, 

resuspension dusts and energy production. However, particulate air pollution is not simply a 

local problem; transboundary long-range transport is an important source of the particulate air 

pollution. There is increasing prevalence of air pollution episodes caused by wildfires and 

agricultural fires. In addition to these anthropogenic sources, also biological material (pollens, 

bacteria, fungi and spores) is an important source of the particulate material present in the 

atmosphere (Jones and Harrison 2004).  
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In experimental studies, coarse particles have most often dominated the responses. The 

discrepancy between epidemiological and experimental data may be due to different lung 

dosimetry and toxicokinetics of the particulate matter in experimental studies and in the real-

life situation. There are many proposed harmful constituents which have been evaluated in 

toxicological studies, e.g. are transition metals (Ghio and Devlin 2001), soil components 

(Becher et al. 2001, Hetland et al. 2000), endotoxins (Schins et al. 2004; Monn and Becker 

1999), organic compounds - including polycyclic aromatic hydrocarbons (PAH) (Binkova et 

al. 2003) - and secondary sulfates (Duvall et al. 2008). 

It has been suggested that particulate chemical composition is an even more important 

modifier of the health outcomes than particle size. There are only few experimental studies 

that have utilized extensive particle characterization, including both inorganic and organic 

chemistry. The present set of studies aims to add knowledge of the potentially harmful 

chemical composition and emission sources of urban particulate air pollution. 

The present studies are part of a wide systematic approach to evaluate the 

immunotoxicological responses and to supplement this with an extensive chemical 

characterization of the same or parallel particulate samples (Sillanpää et al 2005 and 2006, 

Pennanen et al. 2007, Saarikoski et al. 2008, Saarnio et al. 2008). The inflammatory 

parameters that were measured included nitric oxide (NO), tumor necrosis factor alpha 

(TNFa), interleukin 6 (IL-6), and macrophage inflammatory protein 2 (MIP-2). Cytotoxicity 

was measured via the MTT-test and flow cytometric methods. This set of studies is also part 

of the PAMCHAR-project that was conducted in six European cities to provide an in-depth 

toxicological and chemical characterization of urban air particles. The sampling sites were 

chosen to represent contrasting source environments and seasons of public health interest. The 

results of this thesis provide an overview of the potentially harmful particulate sources, size 

ranges and chemical compositions in the European context.  

The current epidemiological data suggest that there is no unambiguous threshold value for 

urban air particulate matter concentrations below which no adverse health effects occur. Due 

to insufficient scientific data on the relative harmfulness of the chemical components and 

sources, current legislative regulation of particulate air pollution throughout the world is 

mainly based on the mass concentrations of PM10 and its subfraction PM2.5. There are large 

gaps in our knowledge and major uncertainties with regard to the causal relationships of the 

sources, and especially the chemical compositions which pose serious health effects. 

Toxicological studies can contribute to understanding these associations at the level of tissue 

or cellular mechanisms. This information is needed in the risk characterization and risk 

assessment of the complex mixture of urban particulate air pollution. 
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2 REVIEW OF THE LITERATURE 

2.1. Atmospheric aerosol particles 

 

Atmospheric aerosol is formed by a complex mixture of solid and liquid components, from 

a wide variety of sources. Particulate size distribution in urban environments consists of four 

modes: nucleation mode (particle diameter Dp <0.01µm), Aitken mode (Dp<0.1) accumulation 

mode (0.1µm < Dp < 1µm) and coarse mode (Dp>1 µm) (Finlayson-Pitts and Pitts 2000). The 

main particulate sources and components of the size ranges are described in table 1.  

The properties of aerosol particles have been reviewed by several authors (Seinfeld and 

Pandis 1998, Finlayson-Pitts and Pitts 1986, Sillanpää 2006, Salonen and Pennanen 2007). The 

smallest <0.1µm particles originate mostly from primary combustion sources e.g. small-scale 

combustion and diesel engine exhaust, but also from gas-to-particle conversion. These particles 

have a very limited lifespan in the atmosphere since they grow very rapidly due to coagulation 

with each other and with larger particles as well as condensation of water on their surfaces. 

Water-solubility of ultrafine particles varies with vicinity and type of specific source. 

Most of the ultrafine particles gradually become enlarged in these processes in the 

accumulation mode. In addition, accumulation particles consist of soot from combustion and 

secondary organic or -inorganic particles and also from products of photochemical reactions. 

Accumulation particles can be transported in the atmosphere even thousands of kilometers, 

consequently most of the long range transported aerosol consists of this size range.  

The fine particle size range contains the accumulation particles and in addition the lower 

end of the coarse size range. Coarse thoracic particles consist mostly of mechanically generated 

and windblown dusts, sea spray and biogenic material e.g. pollens and microbial components. 

Most of these particles are of mineral origin and therefore insoluble, they are also mostly dry 

deposited to ground by gravitation and they have a limited lifespan in the atmosphere. 



 

 18

 

Table 1. The main sources and compositions associated with three particulate size ranges of 
health interest (Sillanpää 2006; Salonen and Pennanen 2007).  
  Ultrafine Accumulation+ Fine Coarse 
Sources Combustion Combustion Mechanically generated  
 Engine exhaust Biomass burning dust 
 Nucleation Industry  Sea salt  
 Gas-to-particle conversion Energy production Resuspension  
 Natural emissions from  Agglomeration and hygroscop- Windblown dust 
 vegetation ic growth of ultrafine particles Biogenic material 
  Photochemical transformation  
  Secondary aerosols  
  Resuspension  
    
Main EC SO4

2- Si 
components OC NH4

+ Al 
 SO4

2- NO3
- Ca 

 Trace metals EC Fe 
  OC Na 
  Trace metals Cl 
   NO3

- 
   OC 
       

EC = elemental carbon, OC = Organic carbon 

OC composition is mainly hydrocarbons in ultrafine and ac+fine particles and biological material 
in coarse particles 

 

Most of the particles worldwide are of natural origin. However, in urban environments, 

anthropogenic sources usually dominate the particulate mass. The main sources for the 

particulate air pollution in the urban environments are secondary organic and inorganic 

material from regional and long range transport, other local sources; traffic, other combustion 

sources, resuspended road dusts and long range transport.  

 

2.2. Epidemiological background 

 

Public health interest and regulations are usually based on three size ranges that do not 

necessarily follow the modal pattern of the urban particulate pollution: ultrafine, fine and 

coarse thoracic particles. There is increasing evidence about the particulate composition 

related effects, which now is supplementing findings based on traditionally studied mass 

concentrations. 
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2.2.1. Heterogeneities in particulate mass concentration-related health effects 

 

The particulate mass concentration in air is not the only explanatory factor for the 

observed adverse health effects. Instead, in epidemiological studies, there have been source, 

season and geographical location-related heterogeneities associated with the adverse effects. 

These include regional differences in the particulate exposure-response relationships with the 

short-term mortality (Samoli et al., 2005) and hospital admissions (Atkinson et al., 2001) in 

Europe and in the United States (Dominici et al. 2006; Peng et al. 2005). A site in close 

proximity to some local sources has also induced a stronger than average concentration-

response relationship. These sources include domestic heating with wood (Boman et al. 2003; 

Naeher et al. 2007) and coal (Clancy et al. 2002), fuel oil combustion (Tsai et al. 2000) and 

heavy traffic (Laden et al., 2000; Hoek et al. 2002; Janssen et al. 2003; Lanki et al., 2006), 

and poorly controlled metal industry (Ghio 2004). 

 

2.2.2. Health effects related to particle size 

 

There is consistent epidemiological evidence that the current levels of outdoor air PM10, 

and in particular PM2.5, are associated with increased respiratory and cardiovascular mortality 

and morbidity in urban areas worldwide (WHO 2003; USEPA 2004). There is also evidence 

in some cases that coarse particles can cause an even larger increase in hospital admissions 

than fine particles (Brunekreef and Forsberg 2005). Nonetheless, there is much poorer 

exposure characterization available for coarse and ultrafine particles than for fine particles. It 

seems likely central site monitoring being a much better proxy for true personal exposure to 

fine particles compared to the situation for coarse and ultrafine particles. This may be one 

reason for the stronger exposure-response relationships in association with fine particules in 

epidemiological studies. Furthermore, the role of urban air ultrafine particles should not be 

underestimated, since there is increasing epidemiological data that they can cause adverse 

effects to human health. There are indications that in subjects with cardiac diseases, ultrafine 

particulate pollution can have a greater impact on the heart than fine or coarse particles 

(Chuang et al. 2005). Ultrafine particles from combustion sources and traffic seem to play an 

important role in these adverse cardiovascular health effects (Delfino et al. 2005). These 

particles can penetrate into cells and can pass through lung epithelium to interstitium and the 

circulation more readily than larger particles (Geiser et al. 2005, Nemmar et al. 2006, 

Semmler-Behnke et al. 2007). Moreover, ultrafine particles are transported via non-active 

processes, such as diffusion whereas larger particles are taken up by phagocytosis (Geiser et 
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al. 2005). It is clear that the particle deposition in the lung is important; coarse thoracic 

particles are deposited in the nasal epithelium or upper airways, whereas the fine and ultrafine 

particles can penetrate as far as the distal airways and the alveoli.  

 

2.2.3. Health effects related to particle sources and composition 

 

There is still very limited knowledge of the specific sources of particulate air pollution 

that might be harmful to human health. However, epidemiological data from studies 

conducted in traffic and industrial sites where it is possible to estimate specific source 

contributions to provide insight to the potentially harmful sources.  

After the ban of coal use in domestic heating in Dublin, Ireland there was a major 

reduction in the numbers of cardiovascular and respiratory daily deaths (Clancy et al. 2002). 

Combustion sources, especially coal combustion and traffic were associated with increased 

mortality in the Harvard six cities study (Laden et al. 2000). Furthermore in the follow up of 

the same study, the mortality rates declined when the PM2.5 levels in the air decreased (Laden 

et al. 2006). Combustion sources and traffic have also been associated with an exacerbation of 

ischemic heart disease (Lanki et al. 2006), asthma (Penttinen et al. 2006) and stroke (Kettunen 

et al. 2007).  

In the study of Tsai et al. (2000), oil burning, vehicular traffic, industry and sulphate 

aerosols were associated to daily mortality in New Jersey. It was also shown in Spokane, 

Washington that biomass burning contributed to respiratory hospitalizations (Schreuder et al. 

2006). Residential heating with wood has also been associated with adverse health effects 

(Boman et al. 2003; Naeher et al. 2007). In the Netherlands, cardiopulmonary mortality (Hoek 

et al. 2002) and respiratory symptoms in children (Brauer et al. 2002, Janssen et al. 2003) 

have been claimed to be more prevalent in subjects living near to a major road. The large 

effect of traffic may due to the fact that residences within the vicinity of a major road have 

had consistently larger particle concentrations in four European cities than residences with 

small impact of traffic (Lianou et al. 2007). 

Black carbon or elemental carbon from combustion and traffic sources is one important 

component of particulate air pollution. However few epidemiological studies have examined 

this topic. Decreased black smoke concentration in the air as a result of a ban of coal use has 

decreased the mortality rates (Clancy et al., 2002). Traffic derived black smoke concentrations 

have been associated with increased cardiopulmonary mortality (Hoek et al. 2002) and 

exacerbations of ischemic heart disease (Lanki et al. 2006). The levels of elemental and organic 

carbon have also been associated with cardiovascular emergency room visits (Metzger et al. 
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2004). The level of elemental and organic carbon in PM2.5 has also been linked to increased 

prevalence of bronchitis in asthmatic children (McConnell et al. 2003). Polycyclic aromatic 

hydrocarbons (PAH) derived from all kind of combustion may contribute to the development of 

a variety of air pollution-related diseases (Schwarze et al. 2006). PAH-compounds are a known 

cause for lung cancer in occupational settings (Armstrong et al. 2004) and most probably also 

this occurs at levels of these compounds present in the environment (Vineis and Husgafvel-

Pursiainen 2005). Air pollution has been shown to cause oxidative DNA-damage and 

consequently to increase the risk for lung cancers (Møller et al. 2008). There is still a lack of 

information on the effects of PAH-compounds on human health parameters.  

There is evidence that of particulate-associated metals can exacerbate respiratory and 

cardiac diseases and increase mortality. The closure of the steel mill in Utah Valley decreased 

the overall PM pollution in the area. In line, respiratory hospital admissions decreased after 

closure but increased again after the refurbishment of the steel mill (Pope 1991 Pope et al. 

1992, Ghio 2004). However, the decrease in hospitalizations and mortality rates was not fully 

explained by the decreased PM mass concentrations (Ghio 2004). Therefore it is apparent that 

the high metal concentrations were an explaining factor for the stronger than average effects. 

Moreover, in the former eastern Germany, children living in the vicinity of mining and metal-

smelters have had a higher prevalence of respiratory symptoms and allergy than those in non-

industrialized areas (Heinrich et al. 1999).  

Secondary inorganic ions may also have a role in the observed human health effects 

either themselves or with co-existing particulate properties. Sulphate is associated with 

adverse health outcomes in epidemiology (WHO, 2003; USEPA, 2004, Dockery et al. 1993, 

Pope et al. 2002). However, the relevance of sulphate aerosol to human health is strongly 

doubted (Schlesinger and Cassee 2003). It has been proposed that the sulphate aerosol is more 

likely a surrogate for co-existing factors, like traffic and industrial emissions (Grahame and 

Schlesinger 2005).  

Soil components or crustal material which are mostly detected in the coarse PM in the 

atmosphere, have also been connected to human respiratory health. Soil components are 

mostly associated with the prevalence of upper respiratory tract symptoms (Tiittanen et al. 

1999) and asthma (Meister and Forsberg 2007). Moreover, respiratory hospital admissions 

may be even more dependent on the coarse than on fine particles (Brunekreef and Forsberg 

2005). In the area with PM10 dominated by soil derived material, it seems that the particulate 

levels have increased mortality (Ostro et al. 1999). The mechanism behind the increased 

respiratory symptoms and mortality associated with crustal material may be different to that 

of fine particles and they may be possibly related to increased inflammation in the airways. 

This concerns mostly the soil derived compositions in the coarse particulate size range. 



 

 

 T
ab

le
 2

. S
el

ec
te

d 
ep

id
em

io
lo

gi
ca

l s
tu

di
es

 th
at

 h
av

e 
ch

ar
ac

te
riz

ed
 p

ar
tic

ul
at

e 
so

ur
ce

s b
y 

ch
em

ic
al

 c
on

st
itu

en
ts

 o
r o

th
er

 m
ea

ns
. 

So
ur

ce
 

PM
 c

ha
ra

ct
er

is
at

io
n 

 C
o-

po
llu

ta
nt

s 
St

ud
y 

po
pu

la
tio

n 
K

ey
 fi

nd
in

gs
 

R
ef

er
en

ce
 

Tr
af

fic
-r

el
at

ed
 

B
la

ck
 sm

ok
e 

N
O

2, 
pr

ox
im

ity
 

El
de

rly
 in

 th
e 

N
et

he
rla

nd
s 

In
cr

ea
se

d 
m

or
ta

lit
y 

as
so

ci
at

ed
 w

ith
 li

vi
ng

 in
 v

ic
in

ity
 o

f m
aj

or
 ro

ad
 

H
oe

k 
et

 a
l. 

20
02

 
C

om
bu

st
io

n 
PM

2.
5, 

El
em

en
ts

 
n.

a.
 

In
ha

bi
ta

nt
s o

f s
ix

 U
.S

. c
iti

es
 

In
cr

ea
se

d 
m

or
ta

lit
y 

as
so

ci
at

ed
 w

ith
 tr

af
fic

 c
om

bu
st

io
n 

so
ur

ce
s 

La
de

n 
et

 a
l. 

20
00

 
 

PM
15

, P
M

 2.
5 

C
O

 
In

ha
bi

ta
nt

s o
f t

hr
ee

 U
.S

. c
iti

es
 

In
cr

ea
se

d 
m

or
ta

lit
y 

as
so

ci
at

ed
 w

ith
 v

eh
ic

ul
ar

 tr
af

fic
 

Ts
ai

 e
t a

l. 
20

00
 

 
El

em
en

ts
, s

ul
ph

at
e,

 o
rg

an
ic

s 
 

 
 

 
 

Pa
rti

cl
e 

nu
m

be
r, 

PM
10

 
N

O
2, 

C
O

, O
3 

A
du

lts
 in

 fi
ve

 E
ur

op
ea

n 
ci

tie
s 

In
cr

ea
se

d 
ris

k 
fo

r m
yo

ca
rd

ia
l i

nf
ar

ct
io

n 
as

so
ci

at
ed

 w
ith

 tr
af

fic
 re

la
te

d 
 

La
nk

i e
t a

l. 
20

06
 

 
 

 
 

pa
rti

cu
la

te
 a

ir 
po

llu
tio

n 
 

 
PM

10
, T

SP
, B

la
ck

ne
ss

 
N

O
2, 

C
O

, O
3, 

SO
2 

In
ha

bi
ta

nt
s o

f H
el

si
nk

i, 
Fi

nl
an

d 
Tr

af
fic

 re
la

te
d 

bl
ac

kn
es

s o
f t

he
 fi

lte
rs

 w
as

 a
ss

oc
ia

te
d 

w
ith

 m
or

ta
lit

y 
Pe

nt
tin

en
 e

t a
l. 

20
04

 
 

PM
2.

5, 
B

la
ck

 c
ar

bo
n 

N
O

2, 
C

O
, O

3 
El

de
rly

 in
 B

os
to

n 
In

cr
ea

se
d 

ris
k 

fo
r m

yo
ca

rd
ia

l i
nf

ar
ct

io
n 

 a
ss

oc
ia

te
d 

w
ith

 c
om

bu
st

io
n 

 
Za

no
be

tti
 a

nd
 S

cw
ar

tz
 2

00
6 

 
PM

2.
5 

n.
a.

 
In

ha
bi

ta
nt

s o
f W

or
ce

st
er

, M
A

, U
SA

 
In

cr
ea

se
d 

ris
k 

fo
r m

yo
ca

rd
ia

l i
nf

ar
ct

io
n 

as
so

ci
at

ed
 w

ith
  

To
nn

e 
et

 a
l. 

20
07

 
 

 
 

 
liv

in
g 

in
 v

ic
in

ity
 o

f m
aj

or
 ro

ad
 

 
 

PM
2.

5 
n.

a.
 

In
ha

bi
ta

nt
s o

f s
ix

 U
.S

. c
iti

es
 

St
ro

ng
er

 a
ss

oc
ia

tio
n 

of
 tr

af
fic

 d
er

iv
ed

 P
M

2.
5 t

ha
n 

ov
er

al
l P

M
2.

5 
Sc

hw
ar

tz
 e

t a
l. 

20
02

 
 

 
 

 
w

ith
 d

ai
ly

 d
ea

th
s 

 
 

PM
2.

5, 
PM

10
 

N
O

2, 
C

O
, O

3, 
SO

2 
C

hi
ld

re
n 

in
 A

us
tra

lia
n 

an
d 

N
ew

 Z
ea

la
nd

 
In

cr
ea

se
d 

re
sp

ira
to

ry
 h

os
pi

ta
l a

dm
is

si
on

s a
ss

oc
ia

te
d 

w
ith

 P
M

  
B

ar
ne

tt 
et

 a
l. 

20
05

 
 

 
 

ci
tie

s 
po

llu
tio

n 
m

os
tly

 fr
om

 tr
af

fic
 

 
 

PM
10

 
n.

a.
 

14
 U

.S
. c

iti
es

 
PM

10
 fr

om
 tr

af
fic

 in
cr

ea
se

d 
ho

sp
ita

l a
dm

is
si

on
s f

or
 c

ar
di

ov
as

cu
la

r a
nd

  
Ja

ns
se

n 
et

 a
l. 

20
02

 
 

 
 

 
re

sp
ira

to
ry

 c
au

se
s 

 
 

 
 

 
 

 
C

oa
l c

om
bu

st
io

n 
B

la
ck

 sm
ok

e 
n.

a.
 

In
ha

bi
ta

nt
s o

f D
ub

lin
, I

re
la

nd
 

B
an

 o
f c

oa
l s

al
e 

an
d 

de
cr

ea
se

d 
ai

r p
ol

lu
ta

nt
 c

on
ce

nt
ra

tio
ns

, d
ec

re
as

ed
 

C
la

nc
y 

et
 a

l. 
20

02
 

 
 

 
 

re
sp

ira
to

ry
-,c

ar
di

ac
- a

nd
 a

ll-
ca

us
e-

m
or

ta
lit

y 
 

 
PM

2.
5, 

El
em

en
ts

 
n.

a.
 

In
ha

bi
ta

nt
s o

f s
ix

 U
.S

. c
iti

es
 

In
cr

ea
se

d 
m

or
ta

lit
y 

as
so

ci
at

ed
 w

ith
 c

oa
l c

om
bu

st
io

n 
 

La
de

n 
et

 a
l. 

20
00

 
 

TS
P 

SO
2 

In
ha

bi
ta

nt
s o

f s
ix

 C
ze

ch
 re

gi
on

s 
In

cr
ea

se
d 

m
or

ta
lit

y 
as

so
ci

at
ed

 w
ith

 b
ro

w
n 

co
al

 c
om

bu
st

io
n 

sm
og

 
Je

lin
ko

va
 a

nd
 B

ra
ni

s 2
00

1 
 

 
 

 
 

 
O

il 
co

m
bu

st
io

n 
 

 
 

 
 

 
PM

2.
5, 

El
em

en
ts

 
n.

a.
 

In
ha

bi
ta

nt
s o

f s
ix

 U
.S

. c
iti

es
 

In
cr

ea
se

d 
m

or
ta

lit
y 

as
so

ci
at

ed
 w

ith
 fu

el
 o

il 
co

m
bu

st
io

n 
La

de
n 

et
 a

l. 
20

00
 

 
PM

15
, P

M
 2.

5 
C

O
 

In
ha

bi
ta

nt
s o

f t
hr

ee
 U

.S
. c

iti
es

 
In

cr
ea

se
d 

m
or

ta
lit

y 
as

so
ci

at
ed

 w
ith

 o
il 

co
m

bu
st

io
n 

Ts
ai

 e
t a

l. 
20

00
 

 
El

em
en

ts
, s

ul
ph

at
e,

 o
rg

an
ic

s 
 

 
 

 
 

PM
10

 
n.

a.
 

In
ha

bi
ta

nt
s o

f H
on

g 
K

on
g 

Li
m

ita
tio

n 
of

 su
lp

hu
r i

n 
fu

el
 o

il 
de

cr
ea

se
d 

da
ily

 m
or

ta
lit

y 
ra

te
s 

H
ed

le
y 

et
 a

l. 
20

02
 

 
PM

10
 

n.
a.

 
14

 U
.S

. c
iti

es
 

PM
10

 fr
om

oi
l c

om
bu

st
io

n 
in

cr
ea

se
d 

ho
sp

ita
l a

dm
is

si
on

s f
or

  
Ja

ns
se

n 
et

 a
l. 

20
02

 
 

 
 

 
ca

rd
io

va
sc

ul
ar

 a
nd

 re
sp

ira
to

ry
 c

au
se

s 
 

 
 

 
 

 
 

Sm
al

l s
ca

le
 w

oo
d 

PM
2.

5, 
 

El
em

en
ts

, N
O

3- , 
TC

 
In

ha
bi

ta
nt

s o
f S

po
ka

ne
, W

A
, U

SA
 

In
cr

ea
se

d 
ca

rd
ia

c 
an

d 
re

sp
ira

to
ry

 e
m

er
ge

nc
y 

vi
si

ts
 a

ss
oc

ia
te

d 
  

Sc
hr

eu
de

r e
t a

l. 
20

06
 

co
m

bu
st

io
n 

 
 

 
w

ith
 b

io
m

as
s b

ur
ni

ng
, e

sp
ec

ia
lly

 a
t h

ea
tin

g 
se

as
on

 
 

 
PM

10
 

N
O

2, 
O

3, 
ha

ze
 

In
ha

bi
ta

nt
s o

f S
an

ta
 C

la
ra

, C
A

, U
SA

 
In

cr
ea

se
d 

em
er

ge
nc

y 
vi

si
ts

 fo
r a

st
hm

a 
as

so
ci

at
ed

 w
ith

 P
M

10
 fr

om
 

Li
ps

et
t e

t a
l. 

19
97

 
 

 
 

 
re

si
de

nt
ia

l h
ea

tin
g 

w
ith

 w
oo

d 
 

 
PM

10
 

N
O

2, 
C

O
, O

3, 
SO

2 
A

st
hm

at
ic

 c
hi

ld
re

n 
in

 S
ea

ttl
e,

 W
A

, U
SA

 
In

cr
ea

se
d 

em
er

ge
nc

y 
vi

si
ts

 a
ss

oc
ia

te
d 

w
ith

 P
M

10
 in

 h
ea

tin
g 

se
as

on
 

N
or

ris
 e

t a
l. 

19
99

 

22



 

 

 
 

 
 

 
 

W
ild

fir
e 

sm
ok

e 
PM

10
 

n.
a.

 
In

ha
bi

ta
nt

s o
f K

uc
hi

ng
 re

gi
on

, M
al

ay
si

a.
 

Fo
re

st
 fi

re
 sm

ok
e 

in
cr

ea
se

d 
ca

rd
io

re
sp

ira
to

ry
 h

os
pi

ta
l a

dm
is

si
on

s 
M

ot
t e

t a
l. 

20
05

 
 

PM
10

, v
is

ib
ili

ty
 

n.
a.

 
In

ha
bi

ta
nt

s o
f K

ua
la

 L
um

pu
r, 

M
al

ay
si

a.
 

Fo
re

st
 fi

re
 sm

ok
e 

in
cr

ea
se

d 
ca

rd
io

re
sp

ira
to

ry
 m

or
ta

lit
y 

Sa
st

ry
 2

00
2 

 
PM

10
 

n.
a.

 
In

ha
bi

ta
nt

s o
f B

ris
ba

ne
, A

us
tra

lia
 

B
us

hf
ire

s a
nd

 P
M

10
-p

ol
lu

tio
n 

in
cr

ea
se

d 
re

sp
ira

to
ry

 h
os

pi
ta

l a
dm

is
si

on
s 

C
he

n 
et

 a
l. 

20
06

 
 

PM
10

 
N

O
2, 

N
O

, N
O

x,C
O

 
In

ha
bi

ta
nt

s o
f V

iln
iu

s, 
Li

th
ua

ni
a 

Fo
re

st
 fi

re
 sm

ok
e 

in
cr

ea
se

d 
re

sp
ira

to
ry

 e
m

er
ge

nc
y 

vi
si

ts
 

O
va

dn
ev

ai
tè

 e
t a

l. 
20

06
 

 
TS

P,
 P

M
10

 
n.

a.
 

In
ha

bi
ta

nt
s i

n 
C

al
ifo

rn
ia

n 
co

un
tie

s 
Fo

re
st

 fi
re

 sm
ok

e 
in

cr
ea

se
d 

re
sp

ira
to

ry
 e

m
er

ge
nc

y 
vi

si
ts

 
D

uc
lo

s e
t a

l. 
19

90
 

 
PM

10
 

n.
a.

 
C

hi
ld

re
n 

in
 C

al
ifo

rn
ia

n 
co

un
tie

s 
Fo

re
st

 fi
re

 sm
ok

e 
in

cr
ea

se
d 

re
sp

ira
to

ry
 h

os
pi

ta
l v

is
its

 
K

ün
zl

i e
t a

l. 
20

06
 

 
 

 
 

 
 

 
 

 
 

 
 

M
et

al
 in

du
st

ry
 

PM
10

 
n.

a.
 

In
ha

bi
ta

nt
s o

f U
ta

h 
V

al
le

y 
PM

10
 le

ve
ls

 in
cr

ea
se

d 
da

ily
 m

or
ta

lit
y 

Po
pe

 e
t a

l. 
19

92
 

 
PM

10
 

n.
a.

 
C

hi
ld

re
n 

in
 U

ta
h 

V
al

le
y 

D
ec

re
as

ed
 re

sp
ira

to
ry

 h
os

pi
ta

l a
dm

is
si

on
s a

fte
r c

lo
su

re
 o

f s
te

el
 m

ill
 

Po
pe

 1
99

1 
 

 
 

 
 

 
  

  
  

  
  

  

23



 

 24

It has been estimated that up to 25% atmospheric particles are of biological origin e.g. 

fragments of pollens and microbes and all kinds of plant and animal debris (Jones and Harrison 

2004). The relevance of this material to human health is largely unknown, current knowledge is 

mainly limited to the gram negative bacterial endotoxins. The epidemiological studies on the 

effects of biological material on human health are mostly from occupational settings and from 

studies from indoor environments. It is known that endotoxins increase the risk for asthma 

development (Tavernier et al. 2005) and occupational respiratory symptoms (Douwes et al. 

2003). Moreover, pollens have been associated with exacerbation of asthma (Delfino 2002), and 

microbial growth in damp indoor environments has been linked to respiratory symptoms and 

asthma (Bornehag et al. 2001; 2004). The contribution of the biological fraction of ambient air 

on human health certainly has some relevance, although it has not been widely evaluated. The 

overview of the epidemiological literature is presented in table 2.  
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2.3. Mechanisms of immunotoxicity 

This review is based on the proposed main mechanisms of the toxicological responses 

induced by particles. However, particulate air pollution may also evoke a wide variety of 

responses in the cells of human host defence system and subsequent symptoms in living 

organisms. In particular, the responses in the alveolar macrophages and in lung epithelial cells 

play a key role in the airway responses to particulate matter. The main mechanisms proposed 

to be associated with particulate air pollution related health effect are presented in figure 1. 

Many of the mechanisms are associated with oxidative stress, which was not measured in this 

set of studies.  

Innate immunity plays a major role in the host defence system against inhaled particles. 

Epithelial cells form a physical barrier against inhaled substances in the lungs. However, the 

epithelium in the lungs is covered by lung lining fluid, which contains chemical defence 

compounds e.g. antimicrobials. Phagocytic cells (macrophages, neutrophils, dendritic cells) 

are the primary cell types combatting particulate material. Macrophages are present in the 

lung lining fluid and in the interstitium of the epithelium. The main functions of the 

macrophages are the recognition and clearance of the foreign material from the lungs. In 

addition to the phagocytosing properties of the macrophages, these cells are capable of 

producing many inflammatory mediators e.g. nitric oxide, proinflammatory cytokines and 

chemokines and they act also as antigen presenting cells for the adaptive immune response. 

Many of the innate immunity functions are regulated via cytokines. Phagocytosing cells 

and epithelium communicate via cytokines and macrophage stimulation leads to epithelial cell 

stimulation and vice versa. Cytokines affect many of the mechanisms needed for effective 

defence against inhaled particles, such as macrophage migration and neutrophil recruitment 

(chemokines). However, a prolonged inflammatory response has also adverse effects. Many of 

the airway diseases (asthma, COPD) can be traced to inappropriate inflammatory cell activation.  

At the level of the whole organism, adaptive immunity plays an important role in host 

defence against inhaled particles. T- and B-lymphocytes are the key cell types in the adaptive 

immune system. They exert a rapid response against previously introduced antigens. T-cells 

are involved in the development of the cell-mediated immune system and they activate the 

antibody producing B-cells, triggering a wide variety of immune responses e.g. via production 

of immunoglobulins. 
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Local and Systemic
Inflammation
-Cytokines, Chemokines
-NO

Cytotoxicity
-Apoptosis
-Necrosis

Genotoxicity
-DNA-damage

-Chromosomal changes
-Mutagenicity

Particulate exposure

Oxidative stress

Cell stimulation
-Leucocytes
-Macrophages
-Epithelial cells

Particulate uptake
-Macrophages, Neutrophils
-Epithelial cells, Neural cells

Cardiovascular diseases
-Heart Rate Variability ⇓
-Blood coagulation
-Atherosclerosis
-Unstable plaques

Chronic respiratory diseases
-Asthma
-COPD

Cancer

Morbidity and Mortality

Translocation
-Interstitium
-Circulation
-Organs

Size and composition
-Metals, Crustal material,
Biogenic material, PAHs, 
Secondary aerosol

Other mechanisms
-Allergy
-Airway irritation
-Neurotoxicity

Figure 1. Main mechanisms suggested as being involved in exposure to and health effects of 

particulate air pollution. 
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2.3.1 Inflammation 

Particulate-induced inflammation has been suggested to be the main mechanism causing 

exacerbations of air pollution related respiratory and cardiac diseases (Pope and Dockery 

2006). It has been shown that particulate inhalation can lead to increased symptoms of 

obstructive lung diseases (COPD, asthma) that are of inflammatory origin (Frampton 2006, 

Holgate and Polosa 2006). There are reports of air pollution related systemic inflammation, 

which can cause cardiovascular effects, such as atherosclerosis, blood coagulation, decrease 

in heart rate variability, ST-segment depression (Nemmar et al. 2006, Godleski 2006). It has 

been proposed that inflammatory effects in macrophages and epithelial cells modify 

neutrophil recruitment from bone marrow and the release of C-reactive protein from liver 

(van Eeden and Hogg 2002). This cascade activates the mechanisms that trigger 

cardiopulmonary diseases.  

In experimental setups, inflammation is the main endpoint which has been evaluated. 

The ability of urban air particulate samples to activate inflammatory responses in 

macrophages and respiratory epithelial cells has been demonstrated in several studies 

(Hetland et al., 2005; Becker et al., 2005; Dybing et al., 2004; Becker and Soukup, 2003 

Becker et al., 2003; Pozzi et al. 2003; Becker et al., 2002; Imrich et al., 2000; Monn and 

Becker, 1999). Moreover, PM10 exposure has increased the release of procoagulant proteins 

from human macrophages, epithelial- and endothelial cells (Gilmour et al. 2004).  

As previously stated, macrophages are the primary cell type combatting inhaled particles 

in the lung. Thus it was decided that a macrophage cell line was examined since these cells 

are the first line of defence against particulate matter.  

In the present studies, TNFα, IL-6 and MIP-2 were analyzed as indicators of 

inflammation. TNFα is an early phase proinflammatory cytokine produced by macrophages, 

and it enhances the production of other cytokines and increases the phagocytic activity of the 

cells. This cytokine stimulates recruitment of neutrophils and monocytes to the site of 

inflammation and stimulates epithelial and endothelial cells. TNFα can also induce cells to 

undergo both apoptosis and necrosis (Barnes et al. 1998; Luster et al. 1999). IL-6 has 

important roles in both innate and adaptive immunity, it is produced by many different cell 

types and also affects the functions of many cell types. It can also stimulate the growth and 

differentiation of B-cells. MIP-2 was chosen in this set of studies to represent a chemotactic 

cytokine, i.e. chemokine. Production of these cytokines is stimulated by several factors e.g. 

TNFα and they play a major role in cell recruitment to sites of inflammation. MIP-2 belongs 

to group of CXC chemokines that have their main target on neutrophils. Moreover, it has a 

major role in the acute inflammatory response.  
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2.3.2. Cytotoxicity 

 

Cytotoxicity is related to airway remodeling in chronic respiratory diseases and it has 

also possible effects on the development of cardiac diseases. Inflammation induced epithelial 

damage is associated with asthma pathogenesis in human lung (Holgate et al. 2003). 

Moreover, the cytotoxic activity of lymphocytes has affected the impairment of COPD 

(Chrysofakis et al. 2004) whereas cytotoxicity in natural killer cells has been associated with 

coronary artery disease (Jonasson et al. 2005). In addition, there is data suggesting that 

apoptosi plays an important role in fibrotic lung diseases (Kuwano et al. 2002).  

In vivo studies have shown particulate exposure induced tissue damage in the lungs of 

laboratory rodents (Happo et al. 2007; Gerlofs-Nijland et al. 2007). These findings are 

supported by in vitro data from several experimental setups which clearly reveal the 

capability of particulate matter to induce cytotoxicity. The size range of particulate matter has 

been shown to affect significantly the associated cytotoxic properties of monocytes (Monn 

and Becker 1999, Osornio-Vargas et al. 2003), macrophages (Salonen et al. 2004, Monn and 

Becker 1999) and this size dependency has also been demonstrated in epithelial cells 

(Frampton et al. 1999, Hetland et al. 2004). Overall, in the in vitro studies, the coarse particles 

seem to have greater cytotoxic potential than particles in the smaller size ranges. In vitro 

experiments have shown that urban particulate samples (Alfaro-Moreno et al. 2002) and 

diesel exhaust particles (Bai et al. 2002) are able to cause cytotoxicity in endothelial cells. 

This is of special interest since endothelial dysfunction is known to be one of the major 

causes of cardiopulmonary diseases (Bai et al. 2007).  

For this set of studies, the MTT-test was chosen for analysis of acute, general cytotoxicity. 

Cytotoxicity (necrosis, apoptosis) is an important mechanism determining the health effects 

induced by particulate air pollution. Necrosis usually is a result of toxicity or trauma that leads 

to cell lysis or destruction of cell organelles. TNFα can cause cytotoxicity, but on the other 

hand, the cytotoxicity itself can also evoke inflammatory responses after cells are lysed. It is 

known that cytotoxicity plays a major role e.g. in acute respiratory distress syndrome 

(Hamacher et al. 2002). Acute cytotoxicity or necrosis most often correlates with inflammation.  

On the contrary, apoptosis is mostly independent of the inflammatory response. 

Apoptosis is a controlled procedure in cells, in which there is DNA fragmentation, shrinkage 

of the cells and subsequent cell death. Apoptosis occurs in many normal processes in 

organisms, especially in the developing tissues and organs. Apoptosis is a “normal” way for 

cells to die. 
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2.3.3. Genotoxicity 

 

Genotoxicity has been associated to air pollution in various studies. In Prague, it was 

observed that high concentrations of PAH compounds in the air could cause chromosomal 

aberrations in exposed subjects (Sram et al. 2007). Moreover, oxidative DNA damage has 

been detected in subjects living in Eastern European cities (Prague, Kosiče, Sofia) in areas 

with high PAH-concentrations, but the genetic background has affected the severity of the 

responses (Singh et al. 2007). 

Recent findings indicate that in human hepatoma, fibroblast and monocyte cell lines 

particulate matter with high genotoxic PAH contents cause DNA-damage (Sevastyanova et al. 

2007). Moreover, PAH -associated genotoxicity was seen when RAW 264.7 macrophages 

were incubated with urban air PM2.5 samples collected from traffic sites (Poma et al. 2006). In 

the study of Karlsson et al. (2006), the subway particles were the most genotoxic of all their 

studied samples (road traffic, wood combustion, tire wear). The workers in that study 

hypothesized that the genotoxicity was due to high metal concentrations in the subway-

derived particles. In line, the levels of water-soluble metal and organic soluble PAHs have 

been associated with micronuclei formation in human epithelial cells after exposure to 

particulate samples collected in Mexico City (Roubicek et al. 2007).  

Genotoxicity was not investigated in the present thesis. However, the main mechanisms 

of the particulate air pollution induced effects are strongly linked to each other. Particulate air 

pollution is associated also with many other adverse health effects that are not discussed here.  

 

2.4. Toxicological findings in association with particulate characteristics  

 

There are many similarities, but also some dissimilarities in the toxicological findings in 

association to particulate matter when compared to epidemiological findings. Numerous 

studies have examined the effects of urban air particles on various toxicological endpoints. 

However, caution should be observed when comparing the results with each other. There are 

a variety of sample collection methods, sample preparation methods and toxicological 

methods that can all affect the measured endpoints. There is also large amount of data 

available from different source particulates e.g. diesel exhaust particles (DEP), residual oil fly 

ash (ROFA), coal fly ash etc, but these cannot be directly compared to the results on ambient 

particles. The common denominator for many of the effects induced by particulate matter is 
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oxidative stress. This review of the literature is limited mostly to the ambient particles in 

urban environments and to their in vitro effects.  

 

2.4.1. Immunotoxic effects related to particle size  

 

There are a vast amount of toxicological studies that have examined the effects of 

different ambient particulate size fractions. There is substantial evidence that in in vitro 

toxicological setups, coarse ambient particulate samples induce greater inflammatory 

responses than fine particulate samples (Hetland et al. 2005, Soukup and Becker 2003, Becker 

et al. 2003, 2002, Monn and Becker 1999). Moreover, the responses to the fine ambient 

particulate samples have been greater than those of the ultrafine particulate samples (Becker 

et al. 2003, 2005). The same pattern applies in most cases also to cytotoxicity (Monn and 

Becker 1999, Osornio-Vargas et al. 2003). In contrast, fine particulate samples have induced 

more cells to undergo apoptosis than coarse particulate samples (Hetland et al. 2004). There 

are however also opposite findings related to model particles (e.g. polystyrene, titanium 

dioxide, carbon black). The responses to ultrafine model particles seem to be dependent on 

the large relative surface area of these particles (Brown et al. 2001; Hohr et al. 2002; 

Oberdörster et al. 2005). Ultrafine particles can even translocate to extrapulmonary tissues 

and cause adverse effects in these sites (Elder et al. 2006, Oberdorster et al. 2004). Generally, 

the studies indicate that particulate composition may be more important than the particulate 

size per se as reviewed by Schwarze et al. (2006).  

 

2.4.2. Toxic effects related to particle sources and composition 

 

Little is known about how different sources contribute to the toxicological responses. 

Few studies have aimed to separate the effects related to different emission sources. However, 

there has been heterogeneity in toxicological responses estimated on an equal mass basis 

depending on the sampling location. This emphasizes the importance of particulate 

composition in the induced responses. An overview of the toxicological studies on particulate 

air pollution is summarized in table 3.  

There has been spatial variation in the inflammatory and cytotoxic responses evoked by 

PM10 sample in different areas of Mexico City (Alfaro-Moreno et al. 2002). In that study, 

inflammatory responses in human lung epithelial cells were most severe with the samples 
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collected from an area dominated with traffic, whereas cytotoxicity endpoints were greatest in 

an area with industrial emissions. It has been also observed that soil components are worse 

than combustion sources in their ability to evoke inflammation in rat alveolar macrophages 

(Hetland et al. 2004). It was shown in the six U.S. cities study that wood combustion sources 

have a stronger association with IL-8 gene expression in human airway epithelial cells than 

coal combustion and traffic (Graff et al. 2007). It has also been observed that PM10 with 

different mineral compositions are not equally potent inducers of IL-8 in human lung 

epithelial cells (Schwarze et al. 2007). In a study with particulate samples from wood 

combustion, tire wear, street traffic and subway particles, it was noted that the traffic particles 

had strongest inflammatory potential (Karlsson et al. 2006). An oil combustion source has 

been implicated in the NF-κB induction in human bronchial epithelial cells (Maciejczyk and 

Chen 2005). A seasonal variation in the same location has affected the inflammatory 

responses and oxidative stress caused by urban particulate samples (Becker et al. 2005, Monn 

et al. 2003). There is some discrepancy in the toxicological findings associated to sources, 

depending on the cell lines, size ranges and endpoints. However, it does seem that different 

local sources are important modifiers of the toxicological responses, with the amount of 

traffic, combustion sources and soil composition being the key factors.  

Transition metals have been shown to affect the inflammatory as well as the cytotoxic 

responses in vitro (Pagan et al. 2003; Frampton et al. 1999). Moreover, metal toxicity in 

particulate matter seems to be dependent on the metal mixture and the oxidation state of the 

metals (Merolla and Richards 2005; Pagan et al. 2003). Particulate samples with high metal 

contents have evoked inflammatory responses in human alveolar macrophages (Schwarze et. 

al. 2007) and in human epithelial cells (Frampton et al. 1999). Some of the metals have been 

associated to distinct sources, e.g. Ni and V with oil combustion. These two metals were 

found to increase the inflammatory responses of human bronchial epithelial cells (Maciejczyk 

and Chen 2005). Metal chelators have been used in toxicological studies to remove the effects 

of the metals in the particulate matter. It has been observed that treatment with a chelator can 

reduce their inflammatory properties in human epithelial cells (Molinelli et al. 2002) 

confirming the important contribution of metals. However, the use of antagonists always 

includes the risk for non-specific effects and therefore misinterpretation. 

Although there is some epidemiological evidence for an association between secondary 

inorganic ions (SO4
2-, NO3

- and NH4
+) and adverse health effects, they have not been 

confirmed by available toxicological data in following reviews (Schlesinger and Cassee 2003; 

Grahame and Schlesinger 2005; Schlesinger et al. 2006). Thus it is likely that these 

compounds are surrogates of other more reactive compounds, originating from the same 
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emission sources and the secondary ion cause effect only at levels far higher than those 

relevant in the environment (Schwarze et al. 2007). 

Organic compounds as assessed with organic carbon content affected the particulate 

induced toxicity in the rat lung (Kodavanti et al. 2005). Organic compounds potentially play a 

significant role in the cytotoxic mechanisms associated with particulate matter (Molinelli et 

al. 2006). It has been observed that emission sources with potentially high PAH 

concentrations may be associated with markers of asthma and allergy in mice (Steerenberg et 

al. 2006) Moreover, PAH compounds can cause genotoxicity and oxidative stress (Binkova et 

al. 2003, Farmer et al. 2003, Xia et al. 2004), and DNA-adducts and strand breaks (Gabelova 

et al. 2007). PAH-compounds have also elicited apoptotic or anti-apoptotic signals in 

Hepa1c1c7 (Solhaug et al. 2004). Moreover, combustion processes release semiquinoid 

substances, which may release hydroxyl radicals in biological systems through quinoid redox 

cycling (Squadrito et al. 2001). Particulate matter with potentially high PAH-contents has 

caused apoptosis, oxidative stress and mitochondrial dysfunctions (Xia et al. 2004, Hiura et 

al. 1999). The soluble organic compounds in the particulate samples have been claimed to be 

associated with cytotoxic and genotoxic properties (Schwarze et al. 2007).  

In addition, soil composition affects the particulate induced responses. The toxicological 

studies on environmental mineral particles are mostly limited to road dusts or windblown 

desert dusts. Particles with different mineral compositions have caused different responses in 

vitro (Hetland et al. 2000). Moreover, the shape of the mineral particles has affected the in 

vitro inflammatory responses (Holopainen et al. 2004). The rock type used in the pavement 

material has also affected the in vitro responses evoked by the mechanically generated 

particles (Lindblom et al. 2006). Moreover, it has been postulated that higher 

proinflammatory potential of PM10 samples collected during spring dust episodes in Finland 

was due to particle bound endotoxins (Salonen et al. 2004).  

The studies on toxicological relevance of biological material in the particulate matter are 

mostly limited to gram negative bacterial endotoxins (Schlesinger et al. 2006). Biological 

material is more prevalent in the coarse size range than in fine size range particulates 

(Schwarze et al. 2007). There have been consistently larger endotoxin concentrations detected 

in coarse PM than the corresponding fine PM (Heinrich et al. 2003; De Vizcaya-Ruiz et al. 

2006). The endotoxin content in particulate matter has induced inflammatory responses in 

vitro (Monn and Becker 1999; Long et al. 2001). Biogenic air pollution in urban environment 

is by far the least studied component. Some insight could be acquired from following the 

examples of studies into indoor air and occupational settings, where the microbes and 

biogenic dusts have caused inflammatory effects. (Bornehag et al. 2000).  
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2.5 Research needs for future regulation of particulate air pollution 

 

Particle size is mainly used as the basis for current outdoor air quality regulations and 

legislation. The size-ranges of the particles usually regulated and measured on a mass basis by 

the authorities are all thoracic particles (PM10) and, more recently, PM2.5subfraction. There has 

not been enough scientific collected data on the relative harmfulness of the chemical 

components and particle sources to allow a more targeted regulation, although there is 

increasing evidence on the importance of particulate composition (Grahame and Schlesinger 

2007). Toxicological studies can provide important additional information on the causative 

association between measured biological endpoints and the chemical composition of particulate 

matter. This would complement the findings from epidemiological studies and provide a sound 

basis for improved risk characterization in with the field of particulate air pollution.  
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3 AIMS OF THE STUDY 

 

1. To validate the particulate sample procedures, cell exposure methods and time-

response relationships in a macrophage cell line using well-characterized reference 

particulate samples. (I) 

2. To investigate the dose-relationships of responses to size-segregated particulate 

samples, collected from different sampling sites and different air pollution situations. 

(II, III) 

3. To investigate the dependency of the inflammatory and cytotoxic responses to urban 

air fine and coarse particulate samples on the subfractions of varying solubility. (IV) 

4. To identify the potentially causative chemical compositions and sources of urban air 

fine and coarse particulate samples to the inflammatory and cytotoxic responses.  

(IV, V) 
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4 MATERIALS AND METHODS 

4.1 PM sampling (I-V) 

4.1.1 Tested samples  

 

All the tested samples are summarized in Table 4. Four different air PM samples, 

including total suspended reference particles, fractionated fine PM sample and diesel PM 

were chosen to Study I to best represent PM samples which would be different in their 

composition. The urban dust standard reference material SRM1649a collected as total 

suspended particles (TSP) from Washington DC, and the diesel PM standard reference 

material SRM1650, were obtained from the National Institute of Standards and Technology 

(NIST, Gaithersburg, USA). The Ottawa dust EHC-93, collected as TSP but filtered to 

correspond to the fine fraction as described by Vincent et al. (1997), was from the 

Environmental Health Centre, Ottawa, Canada. In addition, one ambient air PM2.5 sample 

(HFP-00) from Helsinki, was used. It was collected on PUF with a single-phase, high volume, 

low cutoff inertial impactor (Salonen et al. 2000).  

 

For Study II on long-range transport of wildfire smoke aerosol, size-segregated ambient air 

particulate samples were collected in four size ranges (PM10-2.5, PM2.5-1, PM1-0.2 and PM0.2) in 

Helsinki. The samples were as follows: seasonal average, wildfire episode and mixed episode.  

 

For Studies III-V, the particulate samples for toxicological studies were collected in 

7-week sampling campaigns in six European cities: Duisburg (Oct 4 - Nov 21, 2002), 

Prague (Nov 29 – Jan 16, 2003), Amsterdam (Jan 24 – Mar 19, 2003), Helsinki (Mar 21 – 

May 12, 2003), Barcelona (Mar 28 – May 19, 2003) and Athens (Jun 02 – Jul 21, 2003). 

These samples were collected similarly to those in study II, but the PM2.5-1 and PM1-0.2 

samples were pooled together to form the fine size range. 

 

4.1.2 Particulate samplers 

 

In particulate samplings, a modified Harvard HVCI with a flow volume of 51 m3/h was 

used (Sillanpää et al. 2003, Pennanen et al. 2007). In the toxicological studies, the PM10-2.5, 

PM2.5-1 and PM1-0.2 samples were collected on polyurethane foam (PUF) (Antistatic 



 

 37

polyurethane foam 87035K13, McMaster-Carr, New Brunswick, NJ, USA) and the PM0.2 

samples were collected on glass fiber filters (Munktell MGA, Munktell Filter AB, Grycksbo, 

Sweden). Three similar virtual impactors (VI) were used in parallel to the HVCI for collection 

of reference low-volume particulate samples in two size ranges: fine (PM2.5; Dp<2.5 μm) and 

coarse (PM10−2.5; 2.5 μm<Dp<10 μm). The VI samples were collected on 

polytetrafluoroethylene (PTFE) filters (FS, Millipore, Ireland) at an air flow of 16.7 l/min. 

These samples were utilized to complement the relatively narrow characterization of the 

chemical composition and sources of particles that was possible due to methodological 

reasons, to be obtained from the HVCI samples. 
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4.2 Description of sampling sites (II-V) 

In Study II, particulate sampling was conducted at an urban background site that was 8 km east of 

central Helsinki. In studies III-V, the samplings were conducted in six European cities as presented in 

Table 5.  

 

Table 5. Background information on the sampling campaigns in Studies II-V, including major 

emission sources, proximity to traffic and mean temperature during particulate sampling. 

 

4.3 PM sample preparation methods (I) 

 

For Study I, the SRM1649a, EHC-93 and SRM1650 samples were treated with methanol in a 

water bath sonicator with sonication power 300W and frequency 30kHz 2×30 min, dried in nitrogen 

flow and stored at -20°C. This was exactly the same treatment as used for the extraction of PM2.5 mass 

from the collection substrate, PUF, to form the pooled sample of HFP-00. Additionally, the effect of 

the sonication time during sample preparation prior to testing the inflammatory and cytotoxic effects 

of the samples, was tested. Sample preparation methods for the following studies were chosen on the 

basis of study I.  

For Studies II-V, the PUF sample collection substrates and glassfiber filters were weighed using 

an analytical balance (Mettler Toledo AG 285, Mettler Instrumente AG, Zurich, Switzerland) before 

and after the sampling. The frozen samples were allowed to stabilize in the weighing room for 4 h in 

closed containers and for 16-18 h in open containers before weighing. The relative humidity (15-24 %) 

and temperature (21-22 ºC) in the weighing room were recorded. The electrostatic charges of filter and 

Sampling site Sampling periods Major local PM sources Distance (m) to Vehicle density T (°C) 
   (dd.mm.yyyy)   nearest busy road     
Helsinki (II) 23.8.2002-23.9.2002 Traffic, Harbor, Sea 50 5500 15 
      
Duisburg (III-V) 4.10.2002-21.11.2002 Traffic, Metal industry 280 n.a 9 
      
Prague (III-V) 29.11.2002-16.1.2003 Traffic, Heavy use of  150 5000 -2 
  solid fuels    
Amsterdam (III-V) 24.1.2003-13.3.2003 Traffic, Sea 50 10000 4 
      
Helsinki (III-V) 21.3.2003-12.5.2003 Traffic, Harbor, Sea 300 30700 4 
      
Barcelona (III-V) 28.3.2003-19.5.2003 Traffic, Harbor, Sea, 100 17000 15 
  Metal industry    
Athens (III-V) 2.6.2003-21.7.2003 Traffic  100 30000 29 
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substrate materials were eliminated with a high-voltage ionizer (HAUG Static Line ENSL, Leinfelden-

Echterdingen, Germany). After weighing, the samples were stored at -20°C until extraction for the 

chemical analyses and toxicological studies. 

The sampled particles on PUF or glass fiber filters were extracted and pooled together according 

to size range and campaign period (Studies II-V). Detailed descriptions of the sample preparation 

methods are presented in Studies I and II. The methanol suspension containing PM0.2 particles was 

filtered in order to remove glass fibers derived from filters. The methanol-particulate suspensions were 

divided on a particulate mass basis into 10-ml glass tubes, dried under nitrogen flow and stored at -

20°C. These dry samples were used for toxicological and chemical analyses. An extraction procedure 

similar to the actual particulate samples was used also for the field blanks. The blank samples for the 

chemical analyses and toxicological studies were prepared by particulate size range from blank PUF-

strips or glass fiber filters that had gone through the same procedures as the sampling substrates of the 

actual samples. 

 

4.4 Chemical and source characterization of particulate samples (I-V) 

 

Extensive chemical characterization was made from the samples. The analyzing methods for 

particulate composition are presented in Table 6. 

Table 6. Chemical analysis methods and constituents in the analysis of particulate samples. 

Method Abbreviation Analytes 

Ion chromatography IC1,2 Anions: Cl-, NO3
-, SO4

2- succinate, malonate, oxalate 

  Cations: Na+, NH4
+, K+, Mg2+, Ca2+ 

Inductively coupled plasma mass spectroscopy ICP/MS1,2 Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, Zn 
Energy dispersive X-ray fluorescence ED-XRF2 Al, Ca, Cl, Cu, Fe, K, Mn, Ni, Pb, Si, V, Zn 
Liquid chromatography/mass spectrometry LC/MS2 Sum of levoglucosan, galactosan, mannosan (ΣMA)  
Thermal optical carbon analyser TOA2 EC, OC  
Gas chromatograph mass spectrometry GCMS-SIM1 total of 31 PAH-compounds * 
- selected ion monitoring   
Limulus amebocyte lysate-assay LAL-assay2 Endotoxin 

Analyses from: 1HVCI-samples, 2VI-samples. *For detailed comparison with cellular responses, the PAH compounds 

suggested to be monitored according to Directive 2004/107/EC, were chosen.  

 

In addition, the chemical mass closure method was used to provide better characterize the 

different particulate sources in the sampling campaigns. The definitions of mass closure components 

are presented in table 7. 
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Table7. Components of the HVCI chemical mass closure, their abbreviations and calculation 

formulas.  

 

 

In addition, several constituents were utilized as tracers of certain particulate sources: Ni and V 

for fuel oil combustion, As for coal combustion, ΣMA for biomass combustion, DA for photochemical 

transformation, Al, Ca and Si (and WSS and WIS) for soil components and Endotoxin, OC (and POM) 

for organic or biological fraction. Mass closure components are presented in parenthesis.  

 

4.5 Study design for cell experiments (I-V) 

 

The mouse macrophage/monocyte cell line RAW 264.7 was obtained from American type 

culture collection (ATCC, Rockville, MD, USA). The cells are Abelson murine leukemia virus 

transformed, immortalized cell line. The cells were maintained in RPMI 1640 medium supplemented 

with heat-inactivated fetal bovine serum (FBS), 1% L-glutamine and 1% penicillin-streptomycin. 

Cells were cultured at 37°C and in 5% CO2 atmosphere. 

Mass closure component Abbreviation Formula 

Non sea salt-sulphatea nss-SO4
2- [Nss-SO4

2-] = [SO4
2-] - 0.246 x [Na+] 

Nitrate NO3
-  

Ammonium NH4
+  

Sea salta SS [SS] = 3.248 x [Na+] 
Water-soluble soilb WSS [WSS] = [Fe2O3] + [Al2O3] + [CaO] + [K2O] 

[WIS] = [Fe2O3] + [SiO2] + [Al2O3] + [CaO] (+ [CaCO3]) Water-insoluble soilc WIS 
             + [K2O] - [WSS] 
[OE] = [As]+[Cd]+[Co]+[Cr]+[Cu]+[Ni]+[V] Other elements OE 
          +[Mn]+[Pb]+[Zn] 

Elemental carbon ECd  
Particulate organic 
matter 

POMd [POM] = 1.4 * OC 

Unidentified matter UM [UM] = [gravimetric PMx] - [Σ identified components of PMx] 

aBrewer (1975). 
bWSS is based on the IC and ICP-MS data. 
cWIS is based on the WSS data and the insoluble-to-soluble ratios of constituents in the reference (VI) data.  
dThe relative (percentage) values of EC and POM were taken directly from the VI data of Sillanpää et al. (2006).  
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In the experiments, the cell suspension was diluted to 5×105 cells/ml. The cells were cultured for 24 h 

before the experiments and one hour before the experiments, 1 ml of fresh medium (37°C) was 

changed on the 6-well plates.  

The macrophage cell line was exposed to the samples at four doses of 15, 50, 150 and 300 µg/ml 

in studies I-III, whereas in studies IV and V a single dose (150µg/ml) was used. On the basis of study I 

where there were five timepoints (2-24h), 24h timepoint was chosen for Studies II-V. In all studies, 

three independent experiments were run in duplicate. All experiments were conducted on six-well 

plates, in a volume of 2 ml in each well. To be sure that the particulate collection materials were inert 

and to exclude other artifacts, each plate had also an untreated cell control and a PUF or filter blank. 

After exposing the macrophages to the particulate samples for 24 h, the cells were resuspended 

into cell culture medium by scraping. The viability of the cells was measured with the MTT-test from 

the cell suspension (2×100 µl) of each well. The remaining cell suspension was centrifuged (5min, 

8000rpm, +4°C) to separate the cells and the medium. Nitric oxide analysis from supernatant was 

conducted directly after the exposures. The remaining supernatants were stored at -80°C for cytokine 

analysis (Jalava et al., 2005). The cell pellet was washed, suspended to PBS and fixed in 70% (v/v) 

ethanol for subsequent propidium iodide staining (Penttinen et al., 2005). 

 

4.6 Biochemical analysis (I-V) 

 

Toxicological endpoints in different studies are summarized in Table 4.  There were several 

inflammatory parameters evaluated: nitric oxide (NO) was measured with Griess-method (Green et al. 

1998), proinflammatory cytokines IL-1, IL-6, TNFα, anti-inflammatory IL-10, and chemokine MIP-2 

were assayed from the cell culture medium after the cells were exposed to particulate samples 

according to manufacturer’s instruction, that were slightly modified (R&D systems, MN, USA). 

Cytotoxicity after the exposures was assessed with the MTT-test from the cell suspension (Mossmann 

1993). Detailed descriptions of the above mentioned methods are presented in study I. The DNA 

content was analyzed by propidium iodide (PI) staining of permeabilized cells. (Penttinen et al. 2005) 

This method was used in assessing the cell cycles of the macrophages as well as in assessing the 

proportion of the apoptotic cells in the cultures (Darzynkiewicz et al. 1992).  
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4.7 Statistical methods (I-V) 

 

Statistical methods used in studies I-V are presented in Table 8. All statistical analysis was made 

with SPSS software versions 10-15 in Studies I-V, respectively.  

 

Table 8. Statistical methods used in the five studies. 

Study Analysis Method 
All Equality of variances Levene's test 

   
I Dose response Dunnett's test 
 Time course  
 Effect of methanol treatment  
   

II Dose response Dunnett's test 
 Comparison between induced Tukey's test & 
 Responses Dunnett's C 
 Dose response trends Equation fit 
   

III Dose response Dunnett's test 
 Comparison between samples Tukey's test & 
  Dunnett's C 
 Dose response trends Equation fit 
 Correlations between toxic   
 Endpoints Pearson's correlation 
   

IV Comparisons between treatments Dunnett's test 
 Cell cycle analysis Kruskall-Wallis 
 Correlations between responses  Spearman's rank  
 and mass closure components correlation 
   

V Correlation between responses  Spearman's rank  
 and chemical composition correlation 
 Trends between TNFα and   
  selected source indicators Equation fit 
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5 RESULTS 

5.1. Time-courses of response parameters (I) 

 

The time-courses of the responses were tested in Study I for the maximum response of the 

cytokines, TNFα and IL-6, was found at 24 hrs (2, 4, 8, 16 and 24 hrs were tested). In the assessment 

of cytotoxicity and MIP-2 production (data not shown), the maximum responses occurred earlier, at 16 

and 8 hrs, respectively. However, these responses remained relatively stable for up to 24 hrs. Thus, in 

the four subsequent studies, 24 hrs was selected as the optimal timepoint of response recording.  

 

5.2. Sample treatment (I) 

 

The possibility that the sonication and methanol extraction could have altered the particulate-

induced responses was tested in Study I using reference particulate samples with and without methanol 

extraction. On basis of this dataset, a sonication time of 30 min was selected from the tested 

timepoints (5, 10, 15, 20 and 30 min) for optimal sample preparation, i.e. it did not substantially 

modify the particulate-induced responses, and ensured an efficient extraction of the particulate mass 

from the collection substrates and a homogenous suspension for the cell exposures.  

 

5.3. Inflammatory and cytotoxic responses to particulate samples (I-IV) 

 

There were large differences in the abilities of the samples to induce inflammatory mediator 

production or cytotoxicity. The concentrations of inflammatory mediators after the exposures were 

dependent on the parameter, i.e. IL-6 revealed the smallest and MIP-2 displayed the largest changes in 

the levels. The differences between the inflammatory responses to the samples were larger in the PM1-

0.2, PM2.5-1 and PM2.5-0.2 size-ranges than in PM10-2.5. The inflammatory mediators were sensitive 

parameters in separating the responses within smaller size ranges. Cytotoxicity parameters, especially 

apoptosis, were sensitive response indicators in all the size-ranges.  
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The PM10-2.5 size range samples showed the greatest inflammatory potency. There was also a 

systematic inverse dependency between particle size and the magnitude of the inflammatory responses 

in the macrophages. However, the differences between the responses in cytotoxic and apoptotic 

potency were not as large between the particulate samples of different size- ranges. The results for 

Studies I-V are summarized in table Table 9 as percentile values across the studies.  

 

Table 9. The inflammatory and cytotoxic responses to the particulate samples ranked as 

percentiles across the five studies. Explanations are given in the footnote. 

 Study     Inflammation     Cytotoxicity 
   Size-range Sample  NO IL-6 TNFα MIP-2 Viability Apoptosis 

I TSP SRM1649a   bcl + + nm + nm 
 TSP(<2.5 μm) EHC93 + ++ + nm bcl nm 
 PM2.5 PPF04 (+) bcl (+) nm (+) nm 
         

II PM10-2.5 Seasonal ++ +++ +++ +++ +++ ++ 
  Wildfire ++ ++ ++ ++ +++ (+) 
  Mixed ++ ++ ++ ++ ++ + 
 PM2.5-1 Seasonal (+) + ++ ++ +++ +++ 
  Wildfire (+) (+) + (+) ++ (+) 
  Mixed ++ +++ ++ ++ +++ (+) 
 PM1-0.2 Seasonal ++ bcl (+) (+) ++ +++ 
  Wildfire + bcl (+) (+) + ++ 
  Mixed + bcl bcl (+) + ++ 
         

III-V PM10-2.5 Dui +++ +++ +++ + + ++ 
  Pra +++ +++ +++ +++ ++ (+) 
  Ams +++ ++ +++ +++ + ++ 
  Hel +++ ++ ++ ++ + + 
  Bar +++ +++ +++ +++ +++ ++ 
  Ath +++ +++ +++ +++ +++ +++ 
         
 PM2.5-0.2 Dui + + + + (+) ++ 
  Pra (+) bcl (+) (+) (+) + 
  Ams (+) + (+) + bcl + 
  Hel + bcl + + bcl + 
  Bar + ++ ++ + + (+) 
   Ath ++ + + ++ + +++ 

 nm not measured      
 bcl below control level      
 (+) statistically significant, below 25th percentile of response magnitude  
 + between 25th and 50th percentiles of response magnitude    
 ++ between 50th and 75th percentiles of response magnitude    
 +++ over 75th percentile of response magnitude    
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5.4. Heterogeneities in inflammatory and cytotoxic responses (II-V) 

 

TNFα correlated best with the other response parameters and was, therefore, selected to represent 

inflammation. Cytotoxicity was independent of the inflammatory responses. MTT-test results were 

chosen to represent the cytotoxicity, although other parameters such as apoptosis did not, in most 

cases correlate with cell viability measured with MTT. The long-range transport episodes were studied 

using four particulate size-ranges, since the long range transport most clearly affected the 

accumulation size range (PM1-0.2). Three size-ranges were used in the toxicological characterization of 

samples from six European cities  

 

5.4.1. Effects of air pollution episodes in Helsinki (II) 

 

There were major differences in the inflammatory responses induced by different size-range 

particulate samples, collected in Helsinki during air pollution episodes. Inflammatory responses 

caused by PM0.2 and PM1-0.2 were minor compared to the PM2.5-1 and PM10-2.5 samples. Interestingly, 

the mixed episode PM2.5-1 possessed a greater inflammatory potency than the respective PM10-2.5 

samples. In general, the air pollution situation led to clear heterogeneity in the inflammatory potency 

of the size-segregated particulate samples (Figure 2), with the largest variation being seen in the PM2.5-

1 size-range. Data for PM0.2 are not shown due to their negligible inflammatory responses.  

PM1-0.2 samples were the least cytotoxic, and the PM2.5-1 and PM10-2.5 samples had stronger, 

almost equal, cytotoxic potencies, depending on the air pollution situation. Interestingly, PM0.2 

samples were somewhat more cytotoxic at the largest mass doses than PM1-0.2 samples, but the 

heterogeneity between samples in the former size-range was smaller (data not shown). The air 

pollution situation had the largest effect on the responses to PM1-0.2 samples, followed by the PM2.5-1 

and PM10-2.5 samples (Figure 3).  
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Figure 2. TNFα concentrations (ng/ml) produced by mouse RAW 264.7 macrophages in response to a 
24-h incubation with the PM1-0.2, PM2.5-1 and PM10-2.5 samples (150 µg/ml) of the seasonal average, 
wildfire episode and mixed episode air pollution situations. The dots represent the arithmetic mean 
and the whiskers are the standard error of the mean (SEM) (n=6).  
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Figure 3. Cell viability (% of unexposed control) of RAW 264.7 macrophages assessed using the 
MTT-test after a 24-h exposure to the PM1-0.2, PM2.5-1 and PM10-2.5 samples (150 µg/ml) of the seasonal 
average, wildfire episode and mixed episode air pollution situations. The dots represent the arithmetic 
mean and whiskers the SEM (n=6).  
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5.4.2. Effects of air pollution situation in Europe (III-V) 

 

The PM10-2.5 samples were consistently more potent inducers of inflammation than the PM2.5-0.2 

samples. However, there was a greater heterogeneity in the PM2.5-0.2 than the PM10-2.5-related 

inflammatory potency. The responses to particulate samples in these two size ranges were not 

dependent on each other. In PM2.5-0.2 size range, the Mediterranean spring- and summertime samples 

were the most potent, whereas the Prague wintertime sample was the least potent inducer of 

inflammatory responses. In PM10-2.5, the Duisburg and Helsinki samples exhibited somewhat lower 

inflammatory potencies than the other samples in the same size-range (Figure 4). 
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Figure 4. TNFα –concentrations (ng/ml) produced by mouse RAW 264.7 macrophages in response to 
a 24-h incubation with the PM2.5-0.2 and PM10-2.5 samples (150 µg/ml) from Duisburg (Dui), Prague 
(Pra), Amsterdam (Ams), Helsinki (Hel), Barcelona (Bar) and Athens (Ath) sampling campaigns. The 
dot is the arithmetic mean response (n=18 from Studies III - V), and the vertical line shows the 
median, box the standard error (SEM), and the whiskers 5th and 95th percentiles of the response. Note 
the different scale for responses to PM10-2.5 samples. 

 

All PM10-2.5 samples had higher cytotoxic potencies than the PM2.5-0.2 samples. However, there 

was more heterogeneity in the potency of the PM2.5-0.2 than the PM10-2.5 samples. In PM10-2.5 size range, 

the Prague sample was the most potent, whereas in PM2.5-0.2 the Athens sample had the highest 

cytotoxic potency (Figure 5). 
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Figure 5. Cell viability (% of unexposed control) of RAW 264.7 macrophages assessed using the 
MTT-test after a 24-h exposure to the PM2.5-0.2 and PM10-2.5 samples (150 µg/ml) of Duisburg (Dui), 
Prague (Pra), Amsterdam (Ams), Helsinki (Hel), Barcelona (Bar) and Athens (Ath) sampling 
campaigns. The dot is the arithmetic mean response (n=18 from Studies III - V), and the vertical line 
shows the median, box the standard error (SEM) and the whiskers 5th and 95th percentiles.  

 

PM0.2 samples from the six European cities induced negligible inflammatory responses. However, 

the largest dose (300 µg/ml) of the samples in this size range did induce significant cytotoxicity. This 

dose of the Prague wintertime PM0.2 sample induced the largest cytotoxic response of all the studied 

particulate samples in all size ranges (data not shown) (III).  
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5.4.3. Effects of solubility (IV) 

 

The inflammatory and cytotoxic activities of the water-soluble and -insoluble as well as organic-

solvent-soluble and –insoluble fractions of the urban air PM2.5-0.2 and PM10-2.5 particulate samples 

exhibited great diversity (Table 10). Generally, the responses to the soluble fractions were rather 

minor and the effects were mainly caused by the insoluble fractions. There was, however, some 

inflammatory activity associated with the soluble fractions of the Prague wintertime PM2.5-0.2 sample. 

It was remarkable that in many cases removal of either of the two soluble fractions from the 

particulate samples increased the responses to the remaining non-soluble fractions. However, 

dichloromethane extraction decreased the response to the Prague PM2.5-0.2 sample. 
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5.4.4. Effects of chemical composition (IV-V) 

 

There were frequently more associations of the inflammatory and cytotoxic 

responses with the chemical composition in the PM2.5-0.2 than the PM10-2.5 size 

range. The chemical composition also varied more between the sampling 

campaigns with respect to the PM2.5-0.2 samples than the PM10-2.5 samples.  

All the correlation coefficient values between the chemical constituents in 

PM2.5-0.2 and the TNFα or cytotoxic response are shown in Figure 6. Several 

transition metals were in the quarter of positive correlations with both 

inflammation and cytotoxicity, as were the markers of photo-oxidation of the 

organics in the atmosphere (oxalate, malonate, succinate). Also the soil 

components, Ca2+, and insoluble Ca Fe, Al and Si were located in the same 

quarter. 

An opposite effect of negative correlations with both inflammation and 

cytotoxicity was seen with markers of incomplete combustion of solid fuels. 

Wood combustion indicators (ΣMA, K+) and a coal combustion indicator (As) 

were placed in the lower left corner with regard to both response parameters. 

PAH-compounds displayed a negative correlation with inflammation but a 

positive correlation with cytotoxicity (Figure 6). 
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Figure 6. Scatterplot of Spearman’s correlation coefficients (ρ) between the 
chemical constituents and cellular responses to the PM2.5-0.2 samples from six 
European sampling campaigns. X-axis shows the negative and positive 
correlations between the constituents and cytotoxicity, and Y-axis those between 
the constituents and TNFα concentrations. Thin lines show the level of statistical 
significance (0.8/-0.8). (i) means modeled insoluble fraction of some 
constituents.  
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chemical constituents representing some specific particulate source could be 

identified (Figure 7). The vast majority of the correlations were relatively weak.  
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Figure 7. Scatterplot of Spearman’s correlation coefficients (ρ) between the 
chemical constituents and the cellular responses to the PM10-2.5 samples from six 
European sampling campaings. X-axis shows the negative and positive 
correlations between the constituents and cytotoxicity, and Y-axis those between 
the constituents and TNFα concentration, respectively. Thin lines show the 
levels of statistical significances (0.8/-0.8). (i) means modeled insoluble fraction 
of some constituents.  
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Most of the results shown in the present studies on the comparison of the 

toxic activities of the fine and coarse particulate samples within each size range 

were made at the same fixed mass dose as used in macrophage exposures. This 

method was independent of the actual particulate mass concentration in the 

outdoor air during the sampling campaigns. In Studies II and III, the toxic 

activities from the macrophage exposures were weighted with the campaign-

mean mass concentration of the respective size-range particles in cubic meters of 

outdoor air (Table 11).  

 

5.4.5. Relative toxic activity of particulate samples (II, III) 
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6 DISCUSSION 

There were major differences in the immunotoxic responses of particulate 

samples from different air pollution situations. The greatest inflammatory 

responses to the samples were observed with the coarse particulate samples, 

followed by fine samples, whereas the ultrafine particles induced negligible 

responses. Acute cytotoxic and apoptotic responses were not dependent on each 

other in the different particulate size ranges. Most of the responses were 

associated with the insoluble particulate fraction. The local sources of 

incomplete combustion and traffic related resuspension dust were the most 

harmful sources for particulate air pollution associated with the detected 

responses. This study did not attempt to identify any single chemical 

components present in the particulate matter that are responsible for the effects. 

Instead, some groups of components, originating from the same source or 

acting simultaneously in certain air pollution situations, were identified. 

6.1 Validation of high volume particulate sample treatment and 
toxicological methods (I) 

 

Several previous studies have used water (Gilmour et al. 2007; Monn and 

Becker 1999), water/methanol (Hetland et al. 2004; Janssen et al. 2008) or 

water/ethanol (Becker et al. 2003; Duvall et al. 2008) combination as an 

extraction method from the sampling substrates and are, therefore, not fully 

comparable with the present study. During water extraction, in particular the 

extraction of lipid-soluble organic compounds was poor. Methanol, unlike water, 

wets thoroughly the PUF sampling substrate and allows for a high extraction 

efficiency of the particulate mass. It gives rise however to the question, whether 
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the sample composition and consequent biological responses could be modified 

by methanol. The present results showed that the modifying effect was very 

minor, though there was some increase in the recovery of water-soluble metals 

from the sampling substrates by methanol extraction. Furthermore, some 

modification of the biological responses could be seen after exposure to 

emission particulate samples, rich in organic compounds. The responses to urban 

air samples were not modified to any significant extent. This, and the gained 

high extraction efficiency, emphasized the usefulness of methanol extraction 

from the HVCI sampling substrates.  

Likewise, it was important to use a suspension vehicle that did not 

substantially change the chemical composition of the collected and extracted 

particulate sample. Several previous studies have used saline or cell culture 

medium for the sample suspension (Hetland et al. 2004; Pozzi et al. 2003; Imrich 

et al. 2000; Monn and Becker 1999). There is, however, a possibility that liquids 

containing salts, may interact with the similar types of compounds in the 

samples. In this set of studies, water was used for the sample suspension. 

However, sonication is needed to attain a homogenous suspension of the 

particulate samples in water. This is extremely important with samples rich in 

poorly water-soluble organic compositions. The sonication time used, 30 min, 

provided an effective suspension of urban air particulate samples, but did not 

modify their cellular effects.  

It is also important to be aware of the appropriate time-points for each study 

endpoint in order to be able to obtain reliable results on the toxic properties of 

particulate samples, collected at different locations and times. Study I clearly 

highlighted the importance of using appropriate timepoints in the analysis of 

toxicological responses. A similar finding has also been made in the in vivo 

study of Happo et al. (2007) investigating the inflammatory effects of the present 
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size-segregated particulate samples from six European cities on the mouse lung. 

By using relevant timepoints and the same response parameters, it was possible 

to obtain remarkably similar results in both the cell and animal studies. 

 

6.2 Heterogeneities in urban air particulate induced responses (II-V) 

 

6.2.1 Effect of particle size 

Considerable heterogeneities between particulate size-ranges were found 

both in the Helsinki study (II) and the European six-city study (III). In most 

cases, the inflammatory activity increased with particulate size. Thus, PM0.2 

samples were the least potent and PM10-2.5 samples the most potent inducers of 

inflammatory responses. A similar pattern has been noted also in several of 

previous studies (e.g. Hetland et al., 2005; Dybing et al., 2004; Becker et al., 

2003). In addition, acute cytotoxicity was somewhat particle size-dependent, but 

no such systematic effect was seen with apoptosis. Previous studies (Monn and 

Becker 1999; Osornio-Vargas et al. 2003) have also shown greater cytotoxicity 

with coarse than fine particles. Moreover, in the study of Hetland et al. (2004), 

urban air coarse and ultrafine particles were more cytotoxic than fine particles. 

In the present study, a similar pattern was seen with respect to apoptosis.  

 

6.2.2 Effect of air pollution situation 

 

The air pollution situation had a major effect on the reponses of the 

macrophage. Long-range transport episodes of air pollution were associated with 

lower inflammatory potency of particulate samples than the seasonal average 

samples collected from Helsinki. Nonetheless, it was remarkable that the episode 
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samples were associated with enhanced inflammatory and cytotoxic activity per 

cubic meter of outdoor air due to the increased mass concentrations. 

Consequently, this finding may have public health implications. Indeed, 

agricultural fires and uncontrolled wildfires are an increasing problem that are 

predicted to have public health consequences on a global scale (Naeher et al. 

2007). This is also challenging for policy-makers, since transboundary air 

pollution can pose health risks to large populations living even thousands of 

kilometers distant from the fires. 

The results from the six European cities showed that the prevailing sources 

of urban air particulate pollution were associated with clear heterogeneities in 

the inflammatory and cytotoxic activities of especially the urban air PM2.5-0.2 

samples. It should be noted, however, that the results are from samples taken 

during different seasons in the sampling campaigns. Therefore, they cannot be 

generalized and do not represent an overall air pollution situation of any specific 

city, but rather different mixtures of particulate matter originating from different 

emission sources and atmospheric transformation related to the selected seasons.  

Samples from springtime Barcelona and summertime Athens PM2.5-0.2 and 

PM10-2.5 were associated with the highest inflammatory potency. In these two 

campaigns, there was the largest impact of photo-oxidative transformation of the 

organic compounds in the atmosphere and this may have enhanced the toxic 

activities of the particulate samples, e.g. via increased oxidative stress in 

exposed tissues. The Prague samples, that were determined to reflect the heavy 

use of solid fuels (coal, biomass) in domestic heating, displayed a distinctive 

toxicity profile when compared to samples from the other sampling campaigns. 

These samples showed a high cytotoxic and apoptotic potency, and a low 

inflammatory potency. Furthermore, the ultrafine particulate samples from 

Prague were unique, in that they were able to cause cell cycle arrest in 
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macrophages. According to these data, it is obvious that emission sources play 

an important role in the heterogeneity observed in the particulate-induced 

response in different locations and seasons. Previously, distinct sources and 

chemical composition have also been associated with varying in vitro and in vivo 

inflammatory, cytotoxic and allergy adjuvant responses to particulate samples, 

collected across Europe (Steerenberg et al. 2006). Moreover, local traffic sources 

have been found to modify several inflammatory and other toxicity enpoints in 

the rat lung (Gerlofs-Nijland et al. 2007). Temporal differences in the activity of 

certain particulate sources have also partly explained the observed seasonal 

variation seen in previous toxicological studies (Becker et al. 2005; Dybing et al. 

2004; Monn et al. 2003) and epidemiological studies in the United States (Peng 

et al. 2005) and Europe (Samoli et al. 2001). 

Weighing of the results with respect to toxic activity at one representative 

mass dose with particulate mass concentration in the outdoor air was conducted 

in order to achieve a more realistic and real-life consideration of their 

significance. This approach changed considerably the results on the experiments 

with fixed mass. Episodic events of long-range transport increased the mass 

concentration of particles present in the outdoor air. These events most likely 

pose an increased health risk despite the fact that the toxic potency of particulate 

mass per mass unit may well have been reduced due to aerosol aging. Moreover, 

smaller size-range particles may have larger toxic potential than coarse 

particulate material in the real-life situation due to their considerably larger mass 

concentrations in the air in most sampling sites. 
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6.2.3 Effect of solubility 

 

Data on the inflammatory and cytotoxic effects of the water-soluble, 

organic-solvent-soluble and insoluble particulate fractions in the macrophages 

clearly indicated that urban air particulate fractions of different solubilities 

displayed large differences in their toxic activities. The responses were 

dominated by the water-insoluble and organic-solvent-insoluble particulate 

fractions prepared from the PM2.5-0.2 and PM10-2.5 samples. In previous studies, 

there have been similar findings, showing that the insoluble particle components 

are mostly responsible for the inflammatory mediator production in the human 

(Soukup and Becker 2001; Huang et al. 2004), mouse (Ning et al. 2000) and rat 

(Imrich et al. 2000; 2007) alveolar macrophages However, macrophages are 

only one cell type in the defence system though these cells do specialize in the 

uptake and clearance of the larger fine particles and coarse thoracic particles. 

Consequently, responses to the soluble particulate fractions in other cell types 

cannot be excluded. Furthermore, it is possible that insoluble particles act as 

carriers, especially for lipid-soluble compounds attached on their surfaces.  

 

6.3 Potentially harmful source environments and compositions (IV, V) 

 

6.3.1 Ultrafine particulate matter 

 

Ultrafine particles originate mostly from local combustion sources in urban 

environments and their lifetime in the atmosphere is limited due to their fast 

growth into accumulation size-range. Consequently, ultrafine particles may have 
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a strong local impact on human exposure and health effects, although there is 

still a lack of convincing evidence for that assumption. Overall, the 

inflammatory responses to PM0.2 samples were minimal in the present studies, 

which can be partly explained by the macrophage cellular properties which are 

not conducive to phagocyting these small sized particles but also be 

methodological issues – the PM0.2 extracts were filtered to remove glassfibre 

fragments. However, ultrafine particles caused a similar magnitude or even 

larger cytotoxic and apoptotic responses compared to fine particulate matter. 

This provides some insight into the different mechanisms related to ultrafine 

particulate exposures and effects. Correlations of the responses with the 

chemical composition of the ultrafine particles were not calculated, due to their 

negligible inflammatory responses. 

PM0.2 samples from Prague had a high apoptotic activity, and this seemed to 

be coupled with their ability to cause cell cycle arrest in macrophages. Coal 

combustion is a known source of PAH-compounds. The observed 

immunosuppressive effects, combined with cell cycle effects are well in line 

with previous findings on PAHs (Binkova et al 2003). Moreover, it is known 

that PAH compounds can evoke a significant cellular oxygen radical formation 

if they are present in ultrafine particles (Li et al. 2003). Moreover, ambient 

ultrafine particles induced oxidative stress related DNA-damage (Bräuner

et al. 2007). When combined with genotoxicity, this kind of effect may lead to

increased risk of cancer. The Prague samples in all size-ranges had the highest

contribution of PAH compounds to particulate mass found in the sampling

campaigns, which was clearly associated with the known heavy use of coal and

solid biomass in domestic heating. 



 

67 

 

6.3.2. Fine particulate matter  

The chemical composition of particulate mass in the PM2.5-0.2 size range 

displayed the largest differences between sampling campaigns. Most of the mass 

in this size range are accumulation particles, but there are also lower end coarse 

particles present. Thus, this size-range contains a variable mixture of local 

source as well as regional and long-range transported particles.  

Some potentially harmful constituent combinations or sources were 

discovered in the present studies, mostly in association with PM2.5-0.2. These 

sources were mostly identified with known tracers of the emission sources. 

Biomass combustion (ΣMA) contributed clearly to the sampled particles both in 

Prague and Helsinki. Distant wildfires increased episodically the fine particulate 

mass concentration in Helsinki, and consequently the toxicity of outdoor air. In 

fact, as reviewed by Naeher et al. (2007), biomass combustion from residential 

use and wildfires is a major emission source, affecting the air quality of large 

populations all over the world. However, the relative toxicity of these particles 

has not been clarified in comparison to other emission sources, e.g. diesel 

exhaust particles. The present results on ΣMA and PAHs agree with previous 

findings that have suggested diminished inflammatory and increased cytotoxic 

responses to appear when there is a large contribution of particles derived from 

small-scale biomass combustion (Happo et al. 2007; Seagrave et al. 2006). The 

observations point to an immunosuppressive effect.  

In Prague, also local small-scale coal combustion (As, PAHs) affected the 

air quality and the PM2.5-0.2 sample was associated with responses which were 

different from the respective samples of all the other sampling campaigns. It has 

been previously observed in Dublin that small-scale coal combustion has an 
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association with both mortality and morbidity (Clancy et al. 2001). In Prague, 

there was a heavy use of both coal and biomass in domestic heating during the 

sampling campaign. Due to that fact, that the highest concentrations of PAHs 

and Arsenic were measured in the samples of the Prague campaign, i.e. the role 

of coal use was obvious. The present results indicate that poorly controlled 

small-scale combustion of solid fuels may lead to increased toxicity in the 

inhaled particles, which may substantially increase the risk of adverse health 

effects in susceptible population groups. 

Fuel oil combustion (Ni, V) was one of the most prominent sources that 

emerged from different sampling campaigns. Its contribution seemed to be 

largest in warm seasons and associated with the photo-oxidation of the organics 

(DA). Together with Ni and V the DAs (oxalate, succinate and malonate) 

formed a group of components that had the most consistent high positive 

correlations with the inflammatory activity of PM2.5-0.2 samples. This mechanism 

may well be the main explanation for the high inflammatory activity of PM2.5-0.2 

samples from the Mediterranean sampling campaigns.  

Photochemical transformation of organic compounds may lead to highly 

active compounds, e.g. formation of quinoid substances from the PAHs (WHO-

IPCS 1998). Quinones are hypothesized to be efficient producers of reactive 

oxygen species in particle-exposed cells (Squadrito et al. 2001). The observed 

negative associations between the PAH content and induced inflammatory 

responses suggest that PAH-compounds can inhibit macrophage function as 

previously reported (Van Grevenyngche et al. 2004). 

It is likely that the high metal concentrations in the Duisburg PM2.5-0.2 

samples originated from long-term industrial metal emissions. However, these 

samples were by no means exceptionally toxic. Some possibly metal-induced 

effects were detected when the effect of particulate fractions with different 
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solubilities were studied. When combined with the fact that there was a trend for 

some metals (Fe, Cu, Cr) to be positively associated with both cytotoxicity and 

inflammation, the role of water-soluble transition metals from industrial sources, 

could not overruled. Another potential source of metals is traffic. For example. 

Zn, Cu, Fe and Cd can originate from car tires, brakes and clutches 

(Hjortenkarns et al. 2007; Yli-Tuomi et al. 2005).  

Both traffic-related combustion and resuspension dust are important 

sources of particulate pollution in urban areas. Traffic-related combustion 

releases large amounts of carbonaceous material, but also is a source for metals, 

PAHs and gaseous pollutants. In Study V, EC was associated with increased 

production of inflammatory mediators. Traffic-related combustion has shown 

stronger correlation with health and mortality in epidemiological studies. 

Moreover, in the recent study of Gerlofs-Nijland et al. (2007), traffic sources 

contributed substantially to the inflammatory, cytotoxic and blood coagulation 

parameters when samples were administrated to rats. Moreover, Fe and 

especially Cu have a strong Fenton-reactivity (Shi et al. 2003), which indicates 

their oxidative properties.  

Soil components (Ca, Al, Fe, Si) in PM2.5-0.2 samples may originate from 

traffic-related resuspension dust. These soil components were associated with 

increased inflammatory activity. In addition to traffic-related resuspension, soil 

components can enter to the atmosphere as windblown dust from non-vegetated 

areas, construction sites etc. Consequently, local soil composition may make a 

substantial contribution to the particulate material present in the outdoor air. The 

results on soil components agree with the in vivo findings of Happo et al (2008) 

as well as with those from some other previous studies (Steerenberg et al. 2006; 

Veranth et al. 2006). A low-level presence of soil-derived components in the 

fine particulate size range is a common feature in urban atmospheres (Putaud et 
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al. 2004; Vallius et al. 2005), this kind of solid material can partly explain the 

detected toxic properties of the dry season (spring, summer) PM2.5-0.2 samples.  

 

6.3.3. Coarse particulate matter 

 

Coarse particles are mostly of local origin. The chemical composition of the 

PM10-2.5 samples in the present study was the most uniform of all of the size 

ranges. Soil minerals and biogenic material make large contributions to 

particulate mass in this size range. Since the composition of coarse particles and 

the toxic responses varied less than with the PM2.5-0.2 samples, there were also 

fewer significant or nearly significant correlations between the chemical 

constituents and the response parameters in this size range.  

There were much fewer high correlations of the inorganic water-soluble or 

insoluble constituents with the toxicological responses than with the PM2.5-0.2 

samples. Moreover, the detected correlations were not consistent with respect to 

all the toxicological endpoints. A similar observation has recently been reported 

by Duvall et al. (2008). However, the inflammatory potency of the PM10-2.5 

samples was generally much higher per unit of mass than that of the PM2.5-0.2 

samples (Study IV). This may be due to the fact that the contribution of 

insoluble soil-derived particulate material to PM10-2.5 has been much higher 

(Sillanpää et al. 2006; Study IV). 

Despite the small amount of significant correlations between constituents 

and toxic responses, the role of urban air coarse particles should not be 

underestimated. These particles were associated with high inflammatory, 

cytotoxic and apoptotic properties. In fact, there is epidemiological evidence that 
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urban air coarse particles may provoke exacerbations of respiratory disease even 

more strongly than fine particles (Brunekreef and Forsberg 2005).  

Gram-negative bacterial endotoxin has been proposed as one of the most 

harmful compounds present in outdoor air particulate matter. Endotoxin has 

been more abundant in coarse particles compared to fine particles (Heinrich et 

al. 2003). However, endotoxin did not emerge in the present results as a highly 

potent component, which is in line with recent findings of Duvall et al. (2007). 

The LAL-assay is an indirect method and its specificity has not been fully 

confirmed. Gram-negative bacterial endotoxin is only one biological component 

of the large (up to 25%) amount of biological material which contributes to the 

coarse particulate matter (Jones and Harrison 2004). A large proportion of the 

PM10-2.5 mass (14-49%) remained unidentified in the present studies. This may, 

at least partially, be due to the non-identification of the biological fraction in the 

particulate mass.  

 

6.4 Methodological considerations in toxicology (I-V) 

As previously stated, macrophages are the primary cells defending against 

particulate exposure. Although, cell studies will never fully correspond or be 

completely analogous to animal studies, these bioassays can have clear relevance 

when predicting responses in the whole organism. Macrophages are an important 

cell type in the primary inflammatory responses especially in innate immunity 

and this justifies their use in studies on urban air particles. Inflammation is 

regarded as the main mechanism mediating the impairment of cardiorespiratory 

diseases in association with exposure to particulate pollution. 

Other cell types, like respiratory epithelial cells, are also important in 

maintaining inflammatory responses. However, it is believed that to a large 
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extent these cells make a secondary contribution to the overall inflammatory 

response of the lungs, which is initiated by other cells. Epithelial cells are also 

widely used in cell studies on particulate air pollution, and they may be more 

sensitive to some soluble constituents present in particulate samples. 

One approach is to use primary cells in the in vitro studies. This, however, 

always requires the use of animals or human subjects for cell collection. The 

primary cells would most probably be more sensitive and require to be exposed 

to less particulate mass. However, studies in primary cells do not have as good 

repeatability as studies conducted on cell lines due to the variable exposure 

histories of the donors. Moreover, primary cells may lose their viability during 

experimentation sooner than a secondary cell line. Overall, there is a risk with 

primary cells that the responses to particulate samples will display a larger 

variation than that seen with cell lines. The above mentioned issues were 

considered when choosing macrophage cell line for the present studies.  

The results are only from one cell type and they do not therefore necessarily 

represent the situation in the whole organism. However, the present results 

emphasizing the proinflammatory activity of the fine particulate samples from 

six European cities, and the responsible sources and constituents, agree well with 

the parallel studies of Happo et al. (2007; 2008) in the mouse lung, where there 

are interactions between different cell types as well as more effective up and 

down regulation of the various responses.  

Apoptotic responses in this study were detected in a flow cytometric cell 

cycle analysis with PI-staining. This is an indirect method that has been used 

successfully in the determination of the proportion of the apoptotic cells in some 

previous studies (Darzynkiewicz et al. 1992; Penttinen et al. 2005). There are 

also direct methods, such as caspase analysis, which can be used for the 

investigation of apoptosis (Hughes and Mehmet 2003). This would have 
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required additional experiments and more particulate mass and, thus, they were 

not feasible in the present set of studies. 

One important factor in many of the responses associated with particulate air 

pollution is oxidative stress. Additional experiments into this topic would have 

required more particulate mass and for this reason they could not be included in 

this present set of studies. Moreover, particulate material may give rise to strong 

autofluorescence, which would most probably have modified the results from 

both flow cytometric and fluorometric ROS-measurements. In addition to 

cellular ROS production, some particulate constituents are capable of 

intrinsically generating oxygen radicals (Øvrevik et al. 2006). However, reactive 

oxygen species may play an important role in many mechanistic pathways and 

should be measured in the future studies.  

The largest particulate doses in the present study were high when compared 

to average doses in the human lungs under normal exposure conditions in urban 

air. However, surface doses of particles within the lungs can exhibit thousand-

fold variations in respiratory patients due to the uneven particle deposition. 

According to Phalen et al. (2006), these variations can result in even larger 

maximal surface doses in the human lungs than the largest dose used in these 

cell culture experiments. Moreover, also other factors, like exercise, can increase 

the particle dose penetrating into the lungs.  

One confounding factor to consider is the dose of PM0.2 in the present cell 

studies. The masses of PM0.2 samples were calculated from the net filter weights 

but in fact they represented mostly the water-soluble and lipid-soluble fractions, 

since it was necessary to include filtering step in the particulate sample 

preparation after extraction from glass-fibre filter.  
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7 CONCLUSIONS 

The present thesis aimed at adding to our knowledge of the immunotoxic 

properties of urban air particles and their association with potentially harmful 

sources and their chemical compositions. On basis of this work, the following 

conclusions can be made: 

1. A systematic approach was developed for the utilization of the size-

segregated HVCI particulate samples in cell toxicology studies. A high 

extraction efficiency from the sampling substrates was achieved without 

any significant modification of the toxic properties of the urban air 

particles. The response parameters, indicated that 24 hrs was the optimal 

time for exposure of the RAW264.7 macrophages to the particulate 

samples. However, it is crucial that the optimal time-points for different 

response parameters are always tested in each new experimental setup. (I) 

2. Dose-relationships of different shapes were observed for the 

inflammatory and cytotoxic responses to the urban air fine and coarse 

particulate samples collected from different air pollution situations. 

Coarse particulate samples had the highest inflammatory potency, 

followed by fine particles. Ultrafine particulate samples had negligible 

inflammatory activity, but there were occasional effects on cell viability 

as well as evidence of apoptosis and interruption of the macrophage cell 

cycle. The coarse and fine particulate samples from the Mediterranean 

spring and summer campaigns showed higher inflammatory potencies 

that the respective samples from other sampling sites. The fine and 

ultrafine particulate samples from wintertime Prague were highly 

cytotoxic and immunosuppressive. Cellular responses to fine particulate 
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samples displayed the largest heterogeneity in the dose-response 

relationships between the different air pollution situations. (II, III) 

3. The insoluble fraction of both the fine and coarse particulate samples 

was responsible for most of the immunotoxic responses in macrophages. 

When tested separately, the water-soluble or organic-solvent-soluble 

fractions induced most often only minor inflammatory and cytotoxic 

responses. However, the role of soluble components in the whole lung 

and in real-life exposure situations should not be underestimated, since 

especially lipid-soluble organic compounds tend to be bound to solid 

carbon particles. Moreover, macrophages are specialized in the uptake 

and clearance of the larger fine particles and coarse thoracic particles, 

whereas other cell types such as epithelial and endothelial cells may also 

be involved in the maintenance of chronic inflammation occurring with 

long-term exposures. (IV) 

4. The immunotoxic properties of the particulate samples were highly 

dependent on the chemical composition and prevailing sources. Photo-

oxidized organic compounds and transition metals (most clearly Ni and 

V) originating from fuel oil combustion, had consistent positive 

associations with the inflammatory activity of fine particulate samples in 

the macrophages. PAH-compounds from incomplete biomass and coal 

combustion were primarily associated with cytotoxicity. The present 

results suggest that local sources of incomplete combustion of biomass 

and coal, local fuel oil combustion especially in warm seasons, traffic-

related resuspension dust, and long-range transport of forest fire smoke 

particles are important contributors to the toxic properties of the 

particulate material all over Europe. However, they may exert their toxic 

effects via a wide variety of mechanisms. (II, IV, V) 
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Overall, the extensive toxicological and chemical characterization of the 

complex urban air particulate mixture revealed interesting new findings on the 

role of different emission sources and atmospheric processes in particulate 

composition and immunotoxic effects. This information may well be useful in 

the evaluation of health risks associated with urban particulate air pollution. 

Moreover, the variations in particulate composition and toxic responses may 

help to explain some of the heterogeneities in adverse health effects reported in 

epidemiological studies. The potentially harmful compositions and sources of 

urban air particles should be considered when planning future legislation and 

effective abatement measures to improve urban air quality. Local traffic and 

incomplete combustion sources should be given special attention in efforts to 

reduce harmful particulate air pollution. 
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