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Abstract

Community-acquired pneumonia (CAP) is a severe disease and a major cause of

death worldwide especially among the elderly. The most common causative pathogen

is Streptococcus pneumoniae, pneumococcus. The diagnosis of pneumococcal pneu-

monia is difficult because there is no gold standard, a diagnostic test that would

identify all cases and yet be definite.

National Public Health Institute has launched a Finnish Community-Acquired Pneu-

monia study investigating the frequency and causes of CAP among the elderly aged

65 years and above. Sputum, urine, blood and nasopharyngeal swab samples are

collected from the subjects enrolled in the study and a large number of microbio-

logical assays are performed on the samples. One of the main objectives is to find

a case definition for pneumococcal pneumonia in the elderly. For this purpose, the

accuracy of diagnostic tests performed in the study need to be evaluated. In the

absence of gold standard, the true disease status of the subjects is latent and the

sensitivities and the specificities of the diagnostic tests cannot be estimated using

conventional methods.

The aim of this report is to to estimate the sensitivities and the specificities of diag-

nostic tests as well as the prevalence of pneumococcal pneumonia among the elderly

population in Finland using latent class analysis. The method is applied to data

collected in the Finnish Community-Acquired Pneumonia study. Methodological

issues in latent class analysis are discussed. In addition, a function for estimating

the model parameters using statistical program R is presented.

Keywors: latent class analysis, sensitivity, specificity



Marja Snellman

Case definition of pneumococcal pneumonia - a latent class analysis approach

Kansanterveyslaitoksen julkaisuja, B3/2008, 50 sivua

ISBN 978-951-740-772-4 (pdf-versio)

ISSN 0359-3576

http://www.ktl.fi/portal/2920

Tiivistelmä

Avohoitokeuhkokuume on vakava sairaus ja yleinen kuolinsyy maailmanlaajuisesti

erityisesti ikääntyneiden keskuudessa. Suomessa sen arvioidaan aiheuttavan vuosittain

yli 2000 kuolemantapausta yli 65-vuotiaissa. Keuhkokuumeen yleisimpänä taudinai-

heuttajana pidetään Streptococcus pneumoniae -bakteeria, pneumokokkia. Keuhko-

kuumeen mikrobietiologian selvittäminen on hankalaa, sillä täydellistä kultaista

standardia -diagnostista testiä, joka ei anna vääriä positiivisia tai negatiivisia tuloksia-

ei ole olemassa.

Kansanterveyslaitos on aloittanut keuhkokuumetutkimuksen, jossa pyritään selvit-

tämään keuhkokuumeen yleisyyttä ja aiheuttajia ikäihmisten parissa. Erityisen kiin-

nostuksen kohteena on pneumokokkibakteerin osuus taudinaiheuttajana. Tutkimuk-

seen osallistuvilta potilailta kerätään yskös- , virtsa-, nenänielu sekä verinäytteitä,

jotka analysoidaan käyttäen erilaisia mikrobiologisia menetelmiä. Yksi tutkimuk-

sen päätavoitteista on muodostaa pneumokokkikeuhkokuumeen tapausmäärittely.

Tätä varten tarvitaan tietoa tutkimuksessa suoritettujen diagnostisten testien sensi-

tiivisyyksistä ja spesifisyyksistä. Kultaisen standardin puuttuessa sensitiivisyyksien

ja spesifisyyksien estimointi ei onnistu tavanomaisin menetelmin, sillä tutkittavien

yksilöiden todellinen taudin tila on tuntematon.

Tässä raportissa käsitellään latentin luokan analyysia diagnostisten testien luotet-

tavuuden ja pneumokokkikeuhkokuumeen prevalenssin arvioimisessa, kun kultainen

standardi puuttuu. Menetelmää sovelletaan Kansanterveyslaitoksen keuhkokuume-

tutkimuksessa kerättyyn aineistoon. Menetelmään liittyvän teorian lisäksi tutkiel-

massa esitellään estimointia varten R-ohjelmalle kirjoittamani funktio.

Asiasanat: latentin luokan analyysi, sensitiivisyys, spesifisyys
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1. Introduction

Community-acquired pneumonia (CAP) is pneumonia that is not acquired during

hospitalization or institutionalization. CAP is a common illness and a major cause

of death worldwide among all age groups, especially among children and the elderly.

In Finland, approximately 60 000 cases of community-acquired pneumonia occur

yearly, of which approximately 40 % are hospitalized (Korppi et al., 2003). In the

elderly population aged 65 years or more, pneumonia causes over 2000 deaths and

over 10000 periods of hospital treatment yearly.

Most community-acquired pneumonias are bacterial and the most common causative

pathogen is Streptococcus pneumoniae, pneumococcus. The exact proportion of

CAP cases in adults caused by pneumococcus is unknown: estimates vary widely

between 12 % and 41 %, partly depending on the population but mainly on how the

diagnosis of pneumococcal CAP was made (Koivula, 2001, and references therein).

The diagnosis of pneumococcal CAP is difficult, not only because the general def-

inition of community-acquired pneumonia is lacking, but also because there is no

gold standard, a diagnostic test that would identify all pneumococcal cases and yet

be definite. The ideal gold standard is 100 % specific and 100 % sensitive, which

means that there are neither false positive nor false negative test results. For ex-

ample, blood culture is generally regarded as 100 % specific but not very sensitive,

and therefore will not identify all patients with pneumococcal CAP.

In the spring of 2005 the National Public Health Institute of Finland (KTL) launched

a 2-year study - the Finnish Community-Acquired Pneumonia Epidemiological (Fin-

CAP Epi) study - investigating the frequency and causes of community-acquired

pneumonia in the elderly. One of the main objectives is to investigate the definition

of pneumococcal pneumonia. Blood, urine, sputum and nasopharyngeal samples

are collected from patients enrolled in the study, and analysed using a number of

different diagnostic tests. The accuracy of the tests is evaluated by estimating the

sensitivities and the specificities of the tests. The aim is to find a pattern of diag-

nostic tests that could be used for the case definition of pneumococcal CAP. This

case definition is planned to be later used in a study of efficacy of a pneumococcal

vaccine against pneumonia in the elderly people.

The sensitivity of a test is defined as the proportion of true positives of all diseased

cases in the population, or as the probability of the test result being positive given

that the subject has the disease. Specificity is the proportion of true negatives of

all cases without the disease in the population, or the probability of the test result

being negative given that the subject does not have the disease. Let D indicate the
6



true disease status of the subject and X indicate the result of test X. D and X

can only take one of two values: D = 1 when the subject has the disease, D = 0

when the subject does not have the disease. Similarly X = 1 when the test result

is positive, X = 0 when the test result is negative. For test X the sensitivity is the

conditional probability

P (X = 1|D = 1) =
P (X = 1, D = 1)

P (D = 1)
=
P (true positive)

P (diseased)
,

and the specificity is the conditional probability

P (X = 0|D = 0) =
P (X = 0, D = 0)

P (D = 0)
=
P (true negative)

1 − P (diseased)
,

where P (D = 1) is the prevalence of the disease: the proportion of diseased subjects

at a given time point.

Estimating sensitivity and specificity is not complicated when the true disease status

of subjects is known. However, as mentioned above, pneumococcal CAP does not

have a gold standard and therefore the true disease status remains latent for each

subject. In the absence of a gold standard, specificity and sensitivity of a test cannot

be calculated directly and more advanced methods are needed.

Latent class analysis (LCA) is a statistical method for identifying unobserved class

memberships using the information from a set of observed discrete variables that

imperfectly measure the true class membership. The observed variables are depen-

dent, but the association can be explained by the latent class variable. The concept

of LCA was introduced by Paul F. Lazarsfeld in 1950 under the name latent struc-

ture model, but the main breakthrough was not seen until 1974 when Leo Goodman

developed an algorithm for obtaining maximum likelihood estimates of the model

parameters making it possible to use LCA in practice. For a historical review of

LCA, see, e.g. Langeheine (1988) and Goodman (2002).

LCA was first developed for social sciences and psychiatric research, but it has gained

popularity in medical research when assessing the accuracy of diagnostic tests when

no gold standard is available. LCA has been applied to study the performance of

diagnostic tests for myocardial infarction (Rindskopf and Rindskopf, 1986), visceral

leishmaniasis (Boelaert et al., 1999), human herpesvirus (Engels et al., 2000) and

pneumococcal community-acquired pneumonia (Butler et al., 2003), to name a few.

In this thesis, LCA is applied to the data collected in the FinCAP Epi study.
7



2. FinCAP epidemiological study

2.1. Introduction. One of the primary objectives of the Finnish community-acquired

pneumonia epidemiological (FinCAP Epi) study is to find a case definition for pneu-

mococcal community-acquired pneumonia (pnc CAP) in the elderly. The study is

carried out in Tampere, where the population size of non-institutionalized elderly

residents aged 65 years or older is approximately 28 000. Based on the incidence

estimates from a previous study conducted in Finland (Koivula, 2001, and the ref-

erences therein), the expected number of CAP cases in this population is around

700 during the two years of follow-up. A free of charge study clinic has been es-

tablished at Hatanpää Health Centre in order to capture as many potential cases

of CAP as possible. The study clinic services are available every day for all elderly

having symptoms suggestive of pneumonia. Local health care personnel have been

encouraged to refer all patients with suspected pneumonia directly to the clinic. Re-

ferral is not a requirement and the patients can walk into the clinic even without an

appointment. The patients entering the study clinic are examined and interviewed

by the study physician. Also diagnosed CAP patients from Tampere University

Hospital are recruited if possible. The study is conducted by the National Health

Institute (KTL) in co-operation with GlaxoSmithKline (GSK) Biologicals.

In order to be eligible to be enrolled in the study as a CAP case the subject must be

non-institutionalized, at least 65 years of age, permanently living in Tampere and

not have been treated in hospital within one week, except if the patient is enrolled

within 48 hours of hospitalization. In addition, the subject must obviously have

symptoms or signs suggesting pneumonia and the radiological findings need to be

consistent with pneumonia. The subjects fulfilling all of the enrollment criteria are

offered to enter the study. Within 4 to 8 weeks of the first visit, i.e. the acute visit,

a follow-up visit is scheduled.

The study was launched in mid-May 2005 and, by the end of January 2007, alto-

gether 411 patients with clinical suspicion of community-acquired pneumonia with

an informed consent have been enrolled in the study. Of these, 64 have been re-

jected on the basis of further radiological evaluations. The remaining 347 subjects

are assumed to be CAP cases and 277 of them have attended the follow-up visit

within 4 to 8 weeks of the acute visit.

2.2. Collected samples and tests performed. Sputum, blood, urine and na-

sopharyngeal swab (NPS) samples are collected if possible from each enrolled CAP

case. A number of microbiological assays are performed on the samples including
8



culture, polymerase chain reaction (PCR), antigen detection and serology. All labo-

ratory analyses are performed by KTL, except for blood culture and serology, which

are performed by Tampere University Hospital and GSK respectively.

Blood and sputum cultures are conventional diagnostic tests performed when estab-

lishing the etiology of community-acquired pneumonia. Blood culture is the only

test generally regarded as 100 % specific, but typically it has a very low sensitivity.

Sputum culture is also lacking sensitivity, especially if the patient has received an-

timicrobial treatment. The sputum sample is therefore also analysed using PCR, a

relatively new technique in which the pneumococcal DNA is amplified. PCR detects

even low numbers of the pathogen and, compared to culture, it is believed to be

less affected by antimicrobial treatment because it can detect non-viable pathogens.

This, however, may cause false positives, which implies low specificity. In this study

pneumolysin (ply) PCR is used. Positive PCR ply test results are considered nega-

tive in the case when the number of genomes found is not sufficient: the cut-point

is set to 5 genomes per microlitre in this study.

Diagnosis based only on sputum is considered controversial due to possible con-

tamination from the upper airways. However, the results from NPS culture and

NPS PCR ply indicate that contamination is not a major issue in this study; see

section 2.4. Streptococcus pneumoniae isolates in blood, NPS and sputum culture

are serotyped, that is, classified according to the structure of the polysaccharide

capsule enveloping the pneumococcal cell. The findings lacking a capsule could not

be serotyped and are regarded as negative. Quantitative analysis was performed

also for sputum and NPS culture: the number of pneumococcal colonies on the cul-

ture plate was counted. In contrast to sputum PCR ply, no cut-point is set to NPS

PCR ply, and all positive results are considered positive, regardless of the number

of genomes.

Serology and urine antigen test are not affected by antimicrobial treatment. Anti-

bodies against Pnc surface adhesin A (PsaA) and choline binding protein A (CbpA)

are measured from blood serum samples taken on the acute visit and the follow-up

visit. An increase in the antibody levels indicates the presence of pneumococcus.

In this study, at least a 2-fold increase is regarded as a positive test result. Since

antibody levels from two blood samples taken at least a few weeks apart are needed,

serology is not a practical method to make a rapid diagnosis of pnc CAP. In a

vaccine trial, however, this does not pose a problem.
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The following notations and abbreviations are used in the subsequent sections for

the eight diagnostic tests described above:

• Sputum culture (Sc)
• Sputum PCR ply (Sp)
• NPS culture (Nc)
• NPS PCR ply (Np)
• Urine antigen (U)
• Blood culture (B)
• PsaA 2-fold increase (PFi2)
• Cbpa 2-fold increase (CFi2)

2.3. Missing samples. Out of the 347 CAP cases, only 152 have all samples ob-

tained and analysed. The proportion of missing samples are presented in Table 1.

Since the number of missing samples is quite remarkable, it is important to con-

sider the reasons for missingness, for example, whether a sample is more likely to

be missing from patients with pneumococcal CAP, or vice versa.

Table 1. Missing test results

Sample Test n Missing % Missing

Sputum culture 110 31.7
PCR ply 137 39.5

NPS culture 25 7.2
PCR ply 25 7.2

Urine antigen 42 12.1
Blood culture 18 5.2

PsaA 2-fold increase 92 26.5
Cbpa 2-fold increase 75 21.6

Sputum sample is missing from one third of the CAP cases. In addition, sputum

sample volume has not been sufficient to perform PCR for 15 CAP cases, and

therefore 40 % of the sputum PCR ply results are missing. Sputum sample is

hard to collect. Not all cases produce purulent sputum, and as purulent sputum

suggests the presence of bacterial infection, these cases are less likely to have CAP

caused by pneumococcus. On the other hand, sputum sample is hard to obtain

from subjects in poor condition. Since pneumoccoccus is the most common cause

of CAP in patients admitted to hospital, and accounts for more deaths than any
10



other pathogen, one can assume that a large part of these subjects have pneumonia

caused by pneumococcus.

Blood serum has been obtained from all subjects at the acute visit, but since not all

subjects have attended the follow-up visit, serology results are missing from one fifth

of the subjects. In addition, fold-increase against PsaA is missing from further 17

subjects due to reasons in serological assay techniques. Follow-up visits are missing

for several reasons: subjects with a severe condition have either deceased, or are still

hospitalized when the follow-up visit is scheduled to take place. Some have decided

to withdraw from the study. Unfortunately, the data on reasons for missing follow-

up visit are not yet available for all, and therefore the actual reasons for missing

serology results remain unknown for the time being.

Urine antigen is missing for approximately 12% of the subjects. Although all pa-

tients produce urine, the sample is hard to collect from severe cases unless the patient

has been catheterized. A blood sample has been obtained from each subject. The

reason for blood culture results missing is unlikely to be related to the severity of

the disease or the presence of pneumococcus: 18 blood culture results are missing

simply because they have not been received from the Tampere University Hospital

register. NPS sample is missing only for 7.2 % of the subjects, and therefore the

reasons for missing NPS samples are unlikely to affect the inferences.

2.4. Preliminary inspection of the data. The descriptives of the eight tests

described in Section 2.2 are presented in Table 2. The test prevalence is the propor-

tion of positive test results out of analysed samples. Since a large proportion of test

results is missing, also the proportion of positive test results out of all CAP cases is

of interest. These are tabulated in the rightmost column of Table 2.

Pneumolysin PCR for sputum and NPS are the two most prevalent tests with 0.386

and 0.199 test prevalences respectively. If the missing test results are regarded

as negative, the prevalence of sputum PCR ply drops remarkably to 0.233. As

mentioned above, there are two concerns with the sputum sample. Firstly, it is

missing for a third of the subjects and thus is not very useful as a sole diagnostic

test for case definition purposes, because the missing samples cannot be assumed

to be positive. Secondly, the sample may be contaminated, which would mean

that the pneumococcus found in the sample is not from the lower, but from the

upper respiratory tract. Since pneumococcus can also be found in the nasopharynx

of healthy subjects, diagnosis of pnc CAP based on pneumococcal findings in the

upper airways is not considered reliable. However, the data from the FinCAP Epi

study suggest that contamination from nasopharynx is minimal: The test prevalence
11



Table 2. Proportion of positive test results out of obtained samples
and of all CAP cases

Test n + Test Proportion positives
prevalence out of 347 CAP cases

Sputum culture 38 0.160 0.110
Sputum PCR ply 81 0.386 0.233
NPS culture 32 0.099 0.092
NPS PCR ply 64 0.199 0.184
Urine Antigen 24 0.079 0.069
Blood culture 9 0.027 0.026
PsaA 2-fold increase 27 0.106 0.078
CbpA 2-fold increase 29 0.107 0.084

of NPS culture is considerably lower than the prevalence of sputum culture. There

are only five CAP cases with a negative sputum culture but a positive NPS culture,

see Table 3. In addition, the number of pnc colonies in sputum culture is high for

the cases with pneumococcal findings in both NPS and sputum culture, which is

unlikely to be the case if the sputum sample was contaminated.

Table 3. Sputum culture result compared to NPS culture result

NPS culture

Sputum culture - +

- 183 5
+ 14 22

The yield of blood culture is low as expected. However, the yield of positive urine

samples was considerably lower than expected, approximately 8 % tested positive.

The urine sample is easy to collect compared to sputum, antibiotic treatment does

not diminish the yield of positives and the test is simple to perform. In addition,

the result is available within 15 minutes of the sampling. Low test prevalence was

thus a disappointment, especially since in previous studies the urine antigen test

has shown considerably higher prevalences, see for example Butler et al. (2003).

Both serological tests had also a relatively low prevalence. The cross-tabulation of

PsaA 2-fold increase and CbpA 2-fold increase shows that at least 2-fold increase
12



in antibodies against one protein does not necessarily mean an increase in the anti-

bodies against the other protein as well. Since the prevalences of the two tests are

almost identical, and the main interest is in the increase in antibody levels rather

than in the rise of the antibody levels against a specific protein, a composite test of

the two serological tests was formed, denoted by 2Fi in subsequent sections. When

at least 2-fold increase in antibody levels against either PsaA or CbpA is considered

positive, the test prevalence of the composite test is 0.143.

Table 4. PsaA 2-fold increase compared to CbpA 2-fold increase

PsaA 2-fold increase

CbpA 2-fold increase - +

- 216 11
+ 10 17

The sensitivities and specificities of these tests are unknown. In the absence of a

gold standard, the sensitivities and specificities can be estimated using latent class

analysis. This method is described in the following section.

3. Latent class analysis

3.1. Introduction. Consider three tests: sputum culture, urine antigen and blood

culture, denoted by X1, X2 and X3 respectively, and let each test have two possible

realisations: 1 indicating positive and 0 negative result. There are altogether 8

(23) different combinations of the test results, represented in Table 5. Denote the

probability of each combination of the test results by πs, s = 1, . . . , 8. For example

π1 = P (X1 = 0, X2 = 0, X3 = 0).

For simplicity, concentrate on the 179 CAP cases with results available from all

three tests. We have observed the frequencies in different combinations of the test

results n= [153, 26, 10, 3, 0, 0, 3, 2 ], but for each CAP case the true disease status

D, where 1 is indicating pneumococcal CAP and 0 is indicating CAP caused by

other pathogen, is unknown.

It is assumed that the observed frequencies in the cross-classification of the test

results follow a multinomial distribution with 8 probabilities πs, s = 1, . . . , 8 where
13



Table 5. All possible test result combinations of three tests

X1 X2 X3 Observed Probability
frequency

0 0 0 153 π1

1 0 0 26 π2

0 1 0 10 π3

1 1 0 3 π4

0 0 1 0 π5

1 0 1 0 π6

0 1 1 3 π7

1 1 1 2 π8

∑8
s=1 πs = 1. The multinomial log-likelihood function is

(3.1) l(π) =
8

∑

s=1

ns × log πs

where ns is the observed frequency of the sth pattern of test results, see e.g. Agresti

(2002, p. 21).

By utilizing the rule of total probability, the probability that a pattern of test results

is {X1 = i, X2 = j,X3 = k}, where i, j, k = 0, 1, can be expressed using the latent

class D as follows:

(3.2)

P (X1 = i, X2 = j,X3 = k) =

1
∑

d=0

P (X1 = i, X2 = j,X3 = k|D = d) × P (D = d).

In the standard latent class model it is assumed that, given the true disease status,

the test results are independent of each other:

P (X1 = i, X2 = j,X3 = k|D = d) = P (X1 = i|D = d) ×(3.3)

P (X2 = j|D = d) ×

P (X3 = k|D = d).

In other words, conditional on the disease status, knowledge of one of test results

gives no information about the other (Pepe and Janes, 2007). This assumption

is often referred to as the local independence or the conditional independence as-

sumption. An implication of the local independence assumption is that the only

parameters in the model are the prevalence of the disease and the sensitivities and
14



specificities of the tests. Denote

P (D = 1) = µ,(3.4)

P (Xk = 1|D = 1) = ψXk
,(3.5)

P (Xk = 0|D = 0) = φXk
.(3.6)

In words, µ is the prevalence of the disease, ψXk
is the sensitivity of the kth test

and φXk
the specificity of the kth test.

By using the equations (3.2) – (3.6), π1 can expressed as

π1 = P (X1 = 0, X2 = 0, X3 = 0|D = 1) × P (D = 1) +

P (X1 = 0, X2 = 0, X3 = 0|D = 0) × P (D = 0)

= P (X1 = 0|D = 1) × P (X2 = 0|D = 1) × P (X3 = 0|D = 1) × P (D = 1) +

P (X1 = 0|D = 0) × P (X2 = 0|D = 0) × P (X3 = 0|D = 0) × P (D = 0)

= (1 − ψX1
) × (1 − ψX2

) × (1 − ψX3
) × µ + φX1

× φX2
× φX3

× (1 − µ)
and similarly for π2,. . . ,π8.

Let θ denote the model parameters: θ = (µ, ψX1
, ψX2

, ψX3
, φX1

, φX2
, φX3

). The

log-likelihood function in this example assuming local independence is

l(θ) =
∑8

s=1 ns × log πs

= 153 × log {(1 − ψX1
) × (1 − ψX2

) × (1 − ψX3
) × µ+

φX1
× φX2

× φX3
× (1 − µ)}+

26 × log{ψX1
× (1 − ψX2

) × (1 − ψX3
) × µ+

(1 − φX1
) × φX2

× φX3
× (1 − µ)}+

10 × log{(1 − ψX1
) × ψX2

× (1 − ψX3
) × µ+

φX1
× (1 − φX2

) × φX3
× (1 − µ)}+

3 × log{ψX1
× ψX2

× (1 − ψX3
) × µ+

(1 − φX1
) × (1 − φX2

) × φX3
× (1 − µ)}+

0 × log{(1 − ψX1
) × (1 − ψX2

) × ψX3
× µ+

φX1
× φX2

× (1 − φX3
) × (1 − µ)}+

0 × log{ψX1
× (1 − ψX2

) × ψX3
× µ+

(1 − φX1
) × φX2

× (1 − φX3
) × (1 − µ)}+

3 × log{(1 − ψX1
) × ψX2

× ψX3
× µ+

(φX1
× (1 − φX2

) × (1 − φX3
) × (1 − µ)}+

2 × log{ψX1
× ψX2

× ψX3
× µ+

(1 − φX1
) × (1 − φX2

) × (1 − φX3
) × (1 − µ)}.
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There are altogether 7 parameters to estimate on the basis of 8 observed frequencies.

Methods for estimating these parameters are discussed in Section 4. In the following

section, the latent class model for K tests is introduced.

3.2. The unconstrained latent class model assuming local independence.

Consider K diagnostic tests, and denote a 1 × K-vector of random variables as

X = (X1, . . . , XK), where the realisation of Xk, k = 1, . . . , K, is 0 when the kth

test is negative and 1 when positive. Consequently, there are 2K different realisations

of X , which represent the different combinations of the K test results. These can

be conveniently expressed in matrix form. Define the 2K × K matrix A of binary

indicators as

(3.7) A =



































0 0 · · · 0

1 0 · · · 0

0 1 · · · 0

1 1 · · · 0
...

... · · ·
...

1 1 · · · 1



































where the first column is changing the fastest and the last column the slowest.

Each row of matrix A corresponds to a different realisation of X, denoted by

as., s = 1, · · · , 2K.

In the absence of a gold standard the binary variable D indicating the presence

(D = 1) or absence (D = 0) of the disease is unobserved. What are observed are

the frequencies of tested subjects in different combinations of the K tests, n= {n1,

n2, . . . , n2K}. When assuming local independence the probabilities of the different

test result combinations can be expressed as generalisations of equations (3.2) –

(3.3) as follows:
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P (X = as.) = P (X1 = as1, X2 = as2, . . . , XK = asK)

=
∑1

d=0 P (X1 = as1, X2 = as2, . . . , XK = asK|D = d)P (D = d)

=
∑1

d=0

∏K

k=1 P (Xk = ask|D = d)P (D = d)

=
∏K

k=1 P (Xk = ask|D = 0)P (D = 0)+
∏K

k=1 P (Xk = ask|D = 1)P (D = 1)

= P (D = 0)
∏K

k=1 P (Xk = ask|D = 0)+

P (D = 1)
∏K

k=1 P (Xk = ask|D = 1)

= P (D = 0)
∏K

k=1 P (Xk = 0|D = 0)1−ask{1 − P (Xk = 0|D = 0)}ask+

P (D = 1)
∏K

k=1 P (Xk = 1|D = 1)ask{1 − P (Xk = 1|D = 1)}1−ask .

Recall from Section 3.1 that µ = P (D = 1), ψXk
= P (Xk = 1|D = 1) and φXk

=

P (Xk = 0|D = 0), i.e disease prevelence, sensitivity of the kth test and the specificity

of the kth test respectively. Then the 1 × K-vectors ψ = (ψX1
, . . . , ψXK

) and

φ = (φX1
, . . . , φXK

) denote the sensitivities and the specificities of the K tests

respectively.

Let θ denote the model parameters: θ = (µ,ψ,φ). Assuming local independence

and using a generalisation of Equation 3.1, the log-likelihood function can be ex-

pressed as

l(θ) =
2K

∑

s=1

ns × log {P (X = as.)}

=

2K

∑

s=1

ns · log {(1 − µ) ·

K
∏

k=1

{1 − φXk
}ask · φXk

1−ask +

µ ·
K
∏

k=1

ψXk

ask · {1 − ψXk
}1−ask}.

3.3. Local dependence in latent class models. As mentioned above, local in-

dependence is a basic assumption of the standard latent class model. However, this

assumption often fails in practice, for example, in a situation where the same sam-

ple is analysed using two different tests measuring the same condition. Also, local

dependence may occur in situations where there exists a spectrum of severity of the

disease: the severe cases are likely to be positive for most tests whereas the less

severe are more likely to be negative for more than one test (Hui and Zhou, 1998).
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If local independence is falsely assumed, the model is misspecified and the model

estimates of sensitivities and specificities may be biased.

Latent class analysis has been criticized for the local independence assumption by

Alonzo and Pepe (1999), among others. However, local dependence can be ac-

counted for. If two diagnostic tests are locally dependent, one can delete one of

the tests from the model or, alternatively, form a composite test, assuming that the

remaining tests are locally independent. This method is not very useful in the case

when there are several dependent tests in the model, or in the case when the sensitiv-

ities and specificities of both tests are of interest. One could also increase the number

of categories in the latent variable to improve the model fit; for example, instead of

categories non-diseased/diseased have three categories non-diseased/probably dis-

eased/definitely diseased. However, this would inflict the interpretation of the model

parameters: the parameters would no longer correspond to sensitivities and speci-

ficities of the tests nor the prevalence of the disease. Alternative and more feasible

methods are to increase the number of latent variables, or to model the dependence

of one or several pairs of tests explicitly. The latter approach is described in section

3.3.2.

3.3.1. Detecting local dependence. Several methods to detect local dependence have

been suggested over the years by Hagenaars (1988), Garret and Zeger (2000) and

Qu et al. (1996) among others. These methods are based on comparison of the

observed frequencies and the model-predicted frequencies for a pair of diagnostic

tests. For example, a large difference between the observed and the expected log

odds ratio for a pair of tests implies local dependence. When calculating the ex-

pected frequencies, one must obviously first fit a model where local independence is

assumed. Therefore, detecting local dependence is rather a part of model diagnostics

than a preliminary step before fitting the model.

3.3.2. Modelling local dependence. Assume that the tests X1 and X2 are locally

dependent. In other words the sensitivities and specificities are not independent:

P (X1 = 1, X2 = 1|D = 1) 6= P (X1 = 1|D = 1) × P (X2 = 1|D = 1),

P (X1 = 0, X2 = 0|D = 0) 6= P (X1 = 0|D = 0) × P (X2 = 0|D = 0).

One way to model local dependence between the two tests is to replace them with a

joint test, X12, with four possible realisations: 00, 10, 01 and 11. Uebersax (2000)

refers to this as the joint item method, but it is also known as direct effects method,
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first introduced by Harper (1972) and Hagenaars (1988). Variable X12 has four

possible realisations and the following eight conditional probabilities:

P (X1 = 0, X2 = 0|D = 1)

P (X1 = 1, X2 = 0|D = 1)

P (X1 = 0, X2 = 1|D = 1)

P (X1 = 1, X2 = 1|D = 1)

P (X1 = 0, X2 = 0|D = 0)

P (X1 = 1, X2 = 0|D = 0)

P (X1 = 0, X2 = 1|D = 0)

P (X1 = 1, X2 = 1|D = 0).

Since
∑

i,j P (X1 = i, X2 = j|D = 1) = 1, and
∑

i,j P (X1 = i, X2 = j|D = 0) = 1,

only six of these eight parameters need to be estimated, which is two more compared

to a model with a local independence assumption.

Sensitivities ψXi
, i = 1, 2, and specificities φXi

, i = 1, 2, can be calculated as marginal

sums from the conditional probabilities:

ψX1
= P (X1 = 1, X2 = 0|D = 1) + P (X1 = 1, X2 = 1|D = 1)

ψX2
= P (X1 = 0, X2 = 1|D = 1) + P (X1 = 1, X2 = 1|D = 1)

φX1
= P (X1 = 0, X2 = 0|D = 0) + P (X1 = 0, X2 = 1|D = 0)

φX2
= P (X1 = 0, X2 = 0|D = 0) + P (X1 = 1, X2 = 0|D = 0).

A latent class model with a local independence assumption requires at least three

different tests for all model parameters to be identifiable. If local dependence be-

tween two tests is modeled with the direct effects method, the minimum number of

tests is four.

Other methods for dealing with local dependence have been proposed. The joint

item method is a special case of the random effects model, first introduced by

Qu et al. (1996).

4. Parameter estimation and model diagnostics

4.1. Estimation algorithms. For many statistical models an explicit expression

for obtaining maximum likelihood (ML) estimates is lacking. For such models, the

likelihood function is typically maximized using iterative methods.

Although Pepe and Janes (2007) have derived analytic expressions for the parameter

estimates in a 3-test latent class model, iterative methods are, in general, needed to
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find the maximum likelihood estimates of parameters in a latent class model. The

main optimization algorithms used are the Expectation-Maximization algorithm

(EM) and the Newton-Raphson method.

4.1.1. Expectation-maximization algorithm. The EM-algorithm is an iterative method

for finding ML estimates of parameters when the data are incomplete. The method

had been proposed for many years in special contexts before it was generalized and

named by Dempster, Laird and Rubin in 1977, see for example Little and Rubin

(1987). In fact, the proportional fitting algorithm for fitting latent class models pro-

posed by Goodman in 1974 is a variant of the EM-algorithm (Formann and Kohlmann,

1996).

The EM-algorithm is actually not a specific algorithm but a general description for

an algorithm. The basic idea behind the algorithm is to first fill in the missing

data (E-step) using the observed data and the current parameter estimates and

then maximize the likelihood for complete data (M-step) in order to get improved

estimates of the model parameters. The two steps are repeated until convergence

of the likelihood. The formal definition of the algorithm is described in detail by

Dempster et al. (1977).

The EM-algorithm is well suited for latent class models since the models are nat-

urally formulated in terms of missing, that is latent, data. Consider the latent

class model described in Section 3.2. The missing data are the numbers of diseased

subjects in the different test result combinations. In the E-step the unobserved fre-

quencies are replaced by working frequencies which are derived from the observed

data and the current estimates of the prevalence of the disease and the sensitivities

and specificities of the tests. In the M-step the likelihood function for complete

data, that is, the likelihood function we would have if the true disease status of each

subject was known is maximized over the model parameters using as data the work-

ing frequencies calculated in the E-step. The log-likelihood function for complete

data and the maximum likelihood estimators of the parameters are derived in the

Appendix. More specifically, the algorithm is the following:

(1) Define starting values for θ(0) = (µ(0), ψ
(0)
X1
, . . . , ψ

(0)
XK
, φ

(0)
X1
, . . . , φ

(0)
XK

).

(2) The E step: in the (r+1)st iteration calculate P (X = as.|D = d)(r+1),

s = 1, . . . , 2K, and d = 0, 1 using, θ(r) = (µ(r), ψ
(r)
X1
, . . . , ψ

(r)
XK
, φ

(r)
X1
, . . . , φ

(r)
XK

)

(4.1) P (X = as.|D = 0)(r+1) =
K
∏

k=1

φ
(r)
Xk

1−ask

[1 − φ
(r)
Xk

]ask ,
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(4.2) P (X = as.|D = 1)(r+1) =
K
∏

k=1

ψ
(r)
Xk

ask

[1 − ψ
(r)
Xk

]1−ask ,

and

P (X = as.)
(r+1) = µ(r) · P (X = as.|D = 1)(r+1) +(4.3)

(1 − µ(r)) · P (X = as.|D = 0)(r+1).

Then calculate the working frequencies, denoted by

f (r+1) = [f1
(r+1), f2

(r+1), . . . , f2K
(r+1)] using the Equations (4.1-4.3) and the

observed frequencies n = [n1, n2, . . . , n2K ]:

fs
(r+1) = ns ·

P (X = as.|D = 1)(r+1) · µ(r)

P (X = as.)(r+1)
, s = 1, · · · , 2K.

(3) The M step: Using the working frequencies f (r+1), calculate new values

µ(r+1), ψ(r+1) = (ψ
(r+1)
X1

, · · · , ψ
(r+1)
XK

) and φ(r+1) = (φ
(r+1)
X1

, · · · , φ
(r+1)
XK

) :

µ(r+1) =

2K

∑

s=1

fs
(r+1)

N
,

and

ψ(r+1) =
1

µ(r+1)
diag(

f1
(r+1)

N
, · · · ,

f2K
(r+1)

N
)A,

and

φ(r+1) =
1

(1 − µ(r+1))
diag(

(n1 − f1)
(r+1)

N
, · · · ,

(n2K − f2K )(r+1))

N
)(B −A),

where N =
∑2K

s=1 ns, B is a 2K ×K matrix of ones and A is the matrix 3.7

in Section 3.2.

(4) Repeat steps 2 and 3 until convergence.

4.1.2. Newton-Raphson method. The Newton method, or the Newton-Raphson (NR)

method as it is often called, is also an iterative method, and it begins with a set

of initial parameter values θ(0). On each iteration, a gradient vector of the log-

likelihood function, denoted by g(θ), and a matrix of second order derivates, called

the Hessian matrix and denoted by H, are calculated. The parameter values on the

(r + 1)th iteration are calculated using the gradient vector and the inverse of the
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Hessian matrix from the previous iteration r as follows:

θ(r+1) = θ(r) −H (r)−1 · g(r)

where −H (r)−1 · g(r) is called the Newton step, see e.g. McCutcheon (2002).

Seber and Wild (2003) do not recommend this unmodified Newton-Raphson method

for maximizing the likelihood function for two reasons. If the starting values θ(0) are

not close enough to the final solution, the Newton step may be too long and even

decrease the likelihood. Secondly, the Newton-Raphson method does not require

the Hessian to be negative definite at each iteration and therefore does not ensure

an increase in the likelihood at each Newton step. This may lead to that the method

converges to a local minimum. Instead of using the Newton method described above

one should use a modified version of it, which is called the Quasi-Newton method.

EM-algorithm is less sensitive to the choice of starting values compared to the

Newton-Raphson algorithm. However, the Newton-Raphson algorithm is faster

when close to the maximum. NR also produces standard errors for parameter esti-

mates as a by-product by inverting the Hessian matrix. Thus, some software begin

the estimation process with the EM-algorithm and switch to Newton-Raphson when

approaching the maximum likelihood estimates. This way the starting values are

not too far from the final solution and the Newton-Raphson method most likely will

converge.

The log-likelihood function may have multiple local maxima and both Newton-

Raphson and EM-algorithm may converge to a local maximum solution instead of

the global maximum. The algorithm stops when a maximum is reached, but it

cannot distinguish the global maximum from a local maximum. One should repeat

the estimation procedure using different starting values to ensure that the same

parameter estimates are reached with each of the start values (McCutcheon, 2002).

4.2. Identifiability. A model is identifiable when it has a unique maximum like-

lihood solution, that is, no other parameter estimates yield the same log-likelihood

value. Identifiability may be a problem when estimating latent class models, see,

e.g. Formann (2003a).

The necessary and rather obvious condition for identifiability is that the number

of different test combinations must be larger than the number of parameters to be

estimated. Therefore, when local independence is assumed, the minimum number

of tests is three. This condition depends on the model specification. However,

some models which fulfill this criterion are yet not identified. Whether the model is
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identifiable or not, may also depend on the data. If the observed information matrix

is not of full rank, and therefore not invertible, one can be sure that the model is

unidentified. However, also large standard errors of the parameters imply that there

are problems with identifiability. Vermunt and Magidson (2005) refer to this as weak

identification, meaning that although the parameters are uniquely determined, the

data are not informative enough to obtain stable estimates. The formal necessary

and sufficient condition for local identifiability is provided by Goodman (1974) and

later formulated differently by Formann (1985); namely that if the eigenvalues of

the information matrix are smaller than 0, the model is not identified.

If the software used for estimation of a latent class model does not provide the

information matrix, Uebersax (2000) and McCutcheon (2002) suggest to run the

estimation algorithm using different starting values. If a model is not identifiable,

different starting values yield the same log-likelihood value but different parameter

estimates. This method is not very practical. In fact, the information matrix can

be calculated from the maximum likelihood estimates, see Section 4.4.

If the model is unidentifiable one can try to fix the sensitivity or the specificity of

a test to a certain value to reduce the number of parameters. For example, it may

reasonable to fix blood culture specificity as 100%. Also fixing the parameters that

lie on the boundary of the parameter space to the closest boundary may lead to an

identified model.

4.3. Missing data. In most types of data analysis incomplete data create difficul-

ties. Latent class analysis is no exception. Little and Rubin (1987) classified missing

data as missing at random (MAR), missing completely at random (MCAR), and

or neither MAR nor MCAR, which is often referred to as missing not at random

(MNAR). When the data are missing at random or completely at random they are

said to be ignorable.

If the probability of a test result being missing depends neither on the missing test

result nor on the results of the other tests, the test result is missing completely

at random. Assuming MCAR means that the population missing the result of a

certain test is equal to the population not missing the test result in terms of the

results of the other tests in the model (Kolb and Dayton, 1996). In other words,

an equal proportion of positive test results would occur in the missing results as in

the actually observed results. Assuming that the test prevalences are equal implies

that the disease prevalence is equal in these two subpopulations, those missing and

those not missing the result of a certain test. An example of a MCAR situation is
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when the test result is missing for a patient because the sample tube was dropped

in the laboratory.

The main reason for a test result being missing is, however, that the sample to

be analysed was not obtained. Assume that the probability of a test result being

missing is higher for patients in poor condition than for patients who are in good

condition. Furthermore assume that the diagnostic tests are more likely to be posi-

tive for patients in poor condition. In a situation like this, the MCAR assumption

does not hold. The unobserved proportion of positive results in the missing samples

would probably be higher than the proportion positives in the obtained samples.

In a circumstances like this it is more realistic to assume that the test result is

missing at random. Assuming MAR means that the probability of a test result

being missing may depend on the observed data but not on the missing data. The

test prevalences and therefore the disease prevalences are now allowed to be different

in the two subpopulations as long as the test prevalences are the same conditional

on the results of the other tests.

One approach to handle the missing data in the model estimation is to exclude the

subjects with missing test results from the analysis. This, the so-called complete-

case analysis, is problematic for two reasons. Firstly, dropping cases leads to de-

crease in statistical power and secondly, the estimates are unbiased only if the as-

sumption of MCAR is valid, see e.g. Schafer and Graham (2002).

However, when using all available information from each subject, likelihood based

inference is valid provided that the missing data mechanism is ignorable, that is,

MAR or MCAR (Little and Rubin, 1987). For example, consider the three tests

X1, X2 and X3 introduced in Section 3.1 and assume that for a group of patients the

result of test X1 is missing. The number of possible combinations of test results for

complete data is 8. The possible combinations of the test results for the incomplete

data are {?, 0, 0}, {?, 1, 0}, {?, 0, 1} and {?, 1, 1} where ? denotes the missing result

of the test X1. A patient with the test result pattern {?, 0, 0} contribute to the

likelihood with

P (X1 = ?,X2 = 0, X3 = 0) = P (X1 = 0, X2 = 0, X3 = 0) +

P (X1 = 1, X2 = 0, X3 = 0)

= P (X2 = 0, X3 = 0)

= (1 − ψX2
) × (1 − ψX3

) × µ +

φX2
× φX3

× (1 − µ)(4.4)
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As can be seen, the contribution to the likelihood does not depend on the missing

data X1, but on X2 and X3.

As the latent class itself can be regarded missing information, there is a double

missing data problem when the data set is incomplete. When estimating the model

using the EM-algorithm, the M-step remains the same as for complete data as

described in Section 4.1.1, but the E-step has to be modified; for more detail, see

Vermunt 1997, section 3.3.2. Missing data do not affect the identifiability, since

models, which are identified for complete data, are also identified when applied to

incomplete data, assuming that the missing mechanism is ignorable (Hagenaars,

1990, p. 259). Thus missing data do not complicate the estimating procedure

notably. The problems arise when assessing the model fit, see section 4.5

4.4. Software. There are several programs available for latent class analysis. We

used `EM, which is a general program for the analysis of categorical data developed

by Jeroen K. Vermunt. The program is available free of charge from the following

site: http://spitswww.uvt.nl/~vermunt/.

The name `EM stands for log-linear and event history analysis with missing data

using the EM algorithm. With `EM, it is possible to add direct effects between

tests and fix any parameter, except for the prevalence, to a certain value. However,

if a parameter value is fixed the program neither calculates standard errors for

parameter estimates nor the eigenvalues of the information matrix, and thus does

not check whether the model is identifiable. Also, the program produces estimates

even for models that are clearly not identifiable (negative df).

For these reasons, I wrote a function where the likelihood function is maximized

using both EM-algorithm and a quasi-Newton algorithm using statistical software

R (R Development Core Team, 2006), which is freely available at

http://www.R-project.org. For the quasi-Newton algorithm, function nlm in R

base package was used. The EM-algorithm used is based on function lca in package

e1071. Unlike the lca function, this function can handle incomplete data sets. All

parameter values including prevalence can be fixed at a certain value and direct

effects are possible as well. Since the function uses a Newton type algorithm, the

identifiability is checked by inverting the Hessian matrix. Standard errors are pro-

duced for all non-fixed parameters. The downside with the function is that it is very

sensitive to starting values and parameters close to boundaries must often be fixed

for convergence. As `EM turned out to be more robust in terms of starting values,

the function was used for validation of the model and for calculating standard errors

when direct effects are added in to the model.
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In addition, this function, along with the function dfHess in package nlme, was used

for calculating the information matrix from the fits obtained by `EM. The function

is described in more detail in the Appendix. For a review of other software available

for latent class analysis, see Uebersax (2006).

4.5. Model diagnostics.

4.5.1. Goodness-of-fit. Model fit of a latent class model is usually evaluated by com-

paring the observed frequencies to the model-predicted frequencies. If the expected

frequencies differ a lot from the observed ones, the model does not fit well. This

can be tested using a Pearson chi-square statistic:

(4.5) X2 =
2K

∑

s=1

(ns − m̂s)
2

m̂s

,

or the likelihood ratio statistic:

(4.6) G2 = 2
2K

∑

s=1

ns · ln
ns

m̂s

,

where ns is the observed frequency in the sth test result combination, and m̂s the

corresponding expected frequency. The X2 statistic and G2 statistic are asymptot-

ically χ2-distributed, with 2K − p− 1 degrees of freedom, where p is the number of

parameters to be estimated and K is the number of tests.

There are two limitations for which neither the Pearson chi-square statistic nor the

likelihood ratio statistic as such are useful when assessing the goodness-of-fit of the

models in Section 5. Firstly, for sparse data the true distribution of G2 and X2

is unknown, and possibly deviates a lot from the chi-square distribution, see e.g.

Collins et al. (1993). Sparse data often occur when the data set is small or when

the number of possible test result combinations is large. Some solutions for dealing

with the sparseness of the data have been suggested, see e.g. Formann (2003b) and

Reiser and Lin (1999). These methods are not, however, discussed further here since

they do not solve the second problem which occurs when the data set is incomplete.

Thoug it is possible to extend equations 4.1 and 4.2 to handle incomplete data, the

tests as such are not of great interest as they test not only the fit of the model

but also the assumption of MCAR (Hagenaars, 1988, pp. 275-258). Fortunately, if
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the assumption of MAR is valid, the goodness-of-fit of the model of interest can be

assessed using the conditional likelihood ratio test introduced by Fuchs (1982):

(4.7) Gr
2 −Gs

2,

where Gr
2 is the likelihood ratio statistic of the restricted model, that is, the model of

interest, and Gs
2 is the likelihood ratio statistic obtained from fitting the saturated

model as explained in Section 5. Just as for the likelihood statistic for complete

data, the conditional likelihood ratio test statistic is asymptotically χ2-distributed

with 2K − 1 − p degrees of freedom provided that the data are not too sparse.

In addition to performing overall goodness-of-fit tests, it may be useful to exam-

ine the Pearson residuals for the different test result combinations to detect misfit.

However, Pearson residuals are calculated assuming MCAR and therefore cannot

be utilized for diagnosing fit problems if the data are missing at random. A possi-

ble solution, yet not widely discussed in the current literature, is to calculate the

difference between the expected frequencies under the saturated model and the ex-

pected frequencies under the model of interest. These, so-called fit indicators, can

be scaled in order to obtain scaled fit indicators which are analogous to Pearson

residuals. (Collins et al. 2002, and the references therein)

4.5.2. Detecting local dependence. The usual methods to detect local dependence

between the pairs of tests are based on comparison of expected and observed fre-

quencies between pairs of tests and are thus not applicable when data are missing

at random. For a review of these methods, see Zhang (2004). To detect local de-

pendence one can compare two nested models. The general idea is that, if adding a

direct effect between two tests improves the log-likelihood significantly the two tests

are probably locally dependent. To test this, one can use the likelihood ratio test:

−2 · log Λ = −2(LM1
− LM2

),

where LM1
and LM2

denote the maximized log-likelihoods of models M1 and M2

and M1 is the local independence model and M2 the model with direct effects. If the

data are not too sparse, the test statistic has a chi-squared distribution with degrees

of freedom equal to the number of additional parameters in the more complex model.

Again, sparseness of the data causes complications. However, it has been suggested

that the magnitude of the likelihood ratio test is often large enough to show that the

two models are substantially different (Uebersax, 2000, and the references therein).
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5. Latent class models for FinCAP Epi data

The selection of tests to be included in the model is twofold. Too many tests increase

the risk of unidentifiability and local dependence. On the other hand we need to

have enough tests from different locations, e.g. respiratory tract, blood and urine,

in order to catch the whole spectrum of severity of the disease.

Of 128 possible result combinations of the seven tests (Sc,Sp,Nc,Np,U,B and the

composite test Fi2) introduced in Section 2.2, altogether 103 have a zero observed

frequency and only 4 have a frequency above five. Despite the sparseness, the latent

class model fitted for the seven tests was identified. However, several parameter

estimates were on the boundary of the parameter space. The specificity of blood

culture and the sensitivity of sputum PCR ply were estimated to be 100 %. The

specificity estimate for blood culture is reasonable and expected, but the perfect

sensitivity of sputum PCR ply is a concern. The model was fitted assuming local

independence between tests. As the model includes several tests from the same loca-

tion, it is unlikely that this assumption holds. Because of the severe sparseness and

the missing data, limited methods exist to detect which tests are locally dependent.

However, according to initial exploration of the data, NPS culture seemed to overlap

with several other tests. Also likelihood ratio tests performed for models with direct

effects between pairs of tests implied that NPS culture was locally dependent with

NPS PCR ply and sputum culture, which, on the other hand, were locally indepen-

dent. As this kind of complex dependency is hard to take into account, NPS culture

was dropped out from the model.

The second model for the six remaining tests, denoted by M6, was also fitted assum-

ing local independence. The maximum likelihood estimates and standard errors are

presented in Table 6. The prevalence of pneumococcal pneumonia was estimated to

be 22 %, which is somewhat lower than expected. The tests with the lowest preva-

lence, urine, blood culture and serology, showed poor sensitivity but high specificity.

Sputum PCR ply on the other hand had a high sensitivity of 98 %, but a specificity

below 80 %.

In order to perform a goodness-of-fit test assuming MAR, a saturated model, de-

noted by S6, has to be estimated. The saturated model is obtained by estimating

the 2K probabilities of the multinomial distribution so that the partially missing

test result combinations are summed over the possible realisations of the missing

test results as explained in Equation 4.4. As many of the observed frequencies are

zero, a small constant, 0.01 was added to each cell to ensure convergence.
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Table 6. Estimates and asymptotic standard errors for model M6

Estimate (S.E)

Prevalence 0.220 (0.033)

Sensitivity Sc 0.609 (0.076)
Sp 0.980 (0.042)
Np 0.731 (0.076)
U 0.260 (0.063)
B 0.123 (0.041)
2Fi 0.450 (0.076)

Specificity Sc 0.978 (0.016)
Sp 0.786 (0.037)
Np 0.948 (0.021)
U 0.969 (0.013)
B 1.000 (0.000)
2Fi 0.944 (0.018)

According to the conditional likelihood ratio test, the model fit was adequate: Gr
2−

Gs
2 = 192.06 − 145.84 = 46.22 for df = 63 − 13 = 50, p = 0.63. However, since

43 out of 64 possible test result combinations have a zero frequency, the p-value

should be interpreted with caution. In addition, from the scaled fit indicators it

appears that especially test result patterns {0, 1, 1, 1, 1, 1} and {1, 1, 1, 1, 1, 1} are

underestimated, see Table 8. Though the sparseness surely affects the validity of

the likelihood ratio tests presented in Table 9, the magnitude of differences in the

maximum likelihoods implies that blood culture, urine antigen and serology are

dependent.

The fact that blood culture is locally dependent with several tests is expected, since

the test is usually positive only for severe cases of CAP who are likely to have

other tests positive aswell. As mentioned in Section 3.3, local dependence often

Table 7. Likelihood ratio, log-likelihood and degrees of freedom for
LC models

Model G2 Log-likelihood p

1 S6 145.84 -527.13 63
2 M6I 192.06 -550.24 13
3 S5 104.80 -511.32 31
4 M5I 124.43 -521.13 11
5 M5D 114.36 -516.09 13

p: number of parameters
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Table 8. Scaled fit indicators greater than 1.5 in absolute value for
model M6

Test S6 M6 Scaled
Sc Sp Np U B 2Fi Expected Expected fit indicator
1 1 0 0 0 0 9.77 5.47 −1.84
1 0 1 0 0 0 1.60 0.46 −1.66
1 1 1 0 0 0 19.71 11.97 −2.24
0 1 1 1 0 0 0.04 2.76 1.64
0 1 0 1 0 1 2.66 0.90 −1.86
0 0 0 0 1 1 0.20 0.01 −2.34
1 0 0 0 1 1 0.18 0.01 −1.66
0 1 1 1 1 1 3.40 0.31 −5.59
1 1 1 1 1 1 4.55 0.48 −5.88

Table 9. Likelihood ratio tests for models with direct effect between
a pair of tests compared to local independence model

Joint tests Statistic p-value

Sc & Sp 2.98 0.22
Sc & Np 2.23 0.33
Sp & Np 0.37 0.83
Sc & U 3.79 0.15
Sp & U 0.59 0.75
Np & U 0.43 0.80
Sc & B 0.10 0.95
Sp & B 0.26 0.88
Np & B 1.29 0.52
U & B 12.64 0.00
Sc & 2Fi 3.96 0.14
Sp & 2Fi 0.87 0.65
Np & 2Fi 0.58 0.75
U & 2Fi 9.15 0.01
B & 2Fi 13.48 0.00

occurs in situations of this kind. The simple solution is, yet again, to drop one of

the dependent tests instead of incorporating a complicated dependence structure in

the model. As blood culture seems to be the major source of dependency, it was

excluded from the final models.

The estimates for the model assuming local independence and the model with direct

effect between urine antigen and serology, denoted by M5I and M5D respectively,
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Table 10. Estimates and 95 % bootstrap confidence limits for 5 test models

M5I M5D

Estimate LCL UCL Estimate LCL UCL

Prevalence 0.235 0.172 0.307 0.235 0.176 0.306

Sensitivity Sc 0.590 0.443 0.734 0.590 0.446 0.735
Sp 0.966 0.859 1.000 0.964 0.863 1.000
Np 0.715 0.564 0.887 0.725 0.577 0.882
U 0.245 0.135 0.380 0.234 0.124 0.355
2Fi 0.422 0.285 0.571 0.408 0.278 0.548

Specificity Sc 0.983 0.952 1.000 0.985 0.957 1.000
Sp 0.797 0.723 0.869 0.799 0.729 0.871
Np 0.956 0.919 0.991 0.959 0.924 0.993
U 0.969 0.940 0.999 0.965 0.937 0.990
2Fi 0.943 0.905 0.980 0.939 0.900 0.976

are reported in Table 10. The estimates of the two models are almost identical.

The prevalence is somewhat higher and the sensitivities lower than compared to

model M6, but the differences are not large. Neither model had problems with

identifiability. Both models were fitted using several starting values and as same

estimates were obtained each time, the solutions were assumed to be the global

maximum. There was one estimate on the boundary of the parameter space for

the model M5D: the joint probability P (U = 1, 2Fi = 1|D = 0) was estimated to

be zero. According to the model M5D, non-pneumococcal CAP cases have never

both urine antigen and serology positive, in other words, all patients with both tests

positive are true cases of pneumococcal CAP. Though estimates on the boundaries

of the parameter space are a concern, this estimate does not seem implausible.

The G2 values for the two models and for the saturated model, S5, are presented

in Table 7. Comparison to the saturated model is again problematic because of a

high number of zero frequencies, see Table 12 in the Appendix B. However, when

comparing the two nested models M5I and M5D, the chi-squared distribution of

the differences between the G2 values can be expected to be satisfactory even for

sparse data, see Hagenaars (1990, p. 59). According to the difference G2 test, the

model which takes into account the local dependence of urine antigen and serology

fits better than the local independence model: GM5I
−GM5D

= 10.07 with 2 df and

p= 0.0065. Also the scaled fit indicators imply that M5D fits well as for none of

the 32 test result patterns the scaled fit indicators exceeds 2 in absolute value.
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The 95 % confidence limits in Table 10 are computed using nonparametric bootstrap

percentile method. The bootstrap is a resampling technique introduced by Efron

in 1979. It is often used to obtain estimates for confidence intervals in situations,

where the assumption of asymptotic normality is questionable. 2000 data sets of

347 cases were sampled with replacement from the original data. For each bootstrap

sample, the latent class model was fitted. The lower and upper confidence limits for

the parameter estimates were determined as the 2.5th and 97.5th percentile of the

obtained 2000 estimates. For local independence model there were no problems with

identifiability. For model M5D, 196 of 2000 bootstrap models had either positive

eigenvalues or non-invertible Hessian matrix, both of which imply that these models

were not identified.

The prevalence of pneumococcal CAP in the elderly population was estimated to

be 23.5 %. Many of the results were expected. Sputum culture is the most specific

test in the model, but it is lacking sensitivity. Analysing the same sample using

PCR increased the sensitivity remarkably but at the expense of specificity. Urine

antigen and serology are also specific tests but not as sensitive as the tests from

the respiratory tract. Though urine antigen and serology seem to lose out in both

sensitivity and specificity to sputum culture, the tests are still valuable as the tests

are not affected by antimicrobial treatment and the samples are easier to obtain and

process than sputum.

The only result that was surprising, and even regarded as implausible, was the high

specificity of NPS PCR ply. Diagnostic tests based on NPS samples are not generally

considered reliable for reasons described in Section 2.4. Thus, the specificity of 95.9

% seemed too high. However, out of 152 CAP cases with all results available, only

three are NPS PCR ply positive but negative by other tests. This implies that if

the other tests are highly specific, NPS PCR ply must also be specific as it finds the

same cases.

To back up this rationalization, the model estimates were used to predict the propor-

tion of pneumococcal CAP cases for each test result pattern using Bayes’ theorem:

P (D = 1|X = as) =
P (X = as|D = 1) × µ

P (X = as|D = 1) × µ+ P (X = as|D = 0) × (1 − µ)
.

These proportions using estimates from both five test models are reported in Table

13 in the Appendix B. According to model M5D, only 6 % of the subjects with

solely NPS PCR ply positive have pneumococcal CAP, but if any other test from

the respiratory tract is positive as well, the proportion of pnc CAP cases goes up
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Table 11. Expected frequencies and scaled fit indicators for 5 test models

Test S5 M5I M5D

ScSpNpU2Fi Expected Expected Scaled fit Expected Scaled fit

frequency frequency indicator frequency indicator

0 0 0 0 0 180.358 181.898 0.114 181.378 0.076

1 0 0 0 0 3.084 3.368 0.155 3.097 0.007

0 1 0 0 0 51.321 50.420 −0.127 50.327 −0.140

1 1 0 0 0 9.702 6.577 −1.218 7.705 −0.719

0 0 1 0 0 8.037 8.725 0.233 8.269 0.081

1 0 1 0 0 1.581 0.662 −1.129 0.817 −0.846

0 1 1 0 0 10.972 12.189 0.348 14.768 0.988

1 1 1 0 0 19.355 14.498 −1.276 18.478 −0.204

0 0 0 1 0 6.595 5.784 −0.337 7.010 0.157

1 0 0 1 0 0.001 0.167 0.405 0.130 0.356

0 1 0 1 0 2.951 2.767 −0.111 2.132 −0.561

1 1 0 1 0 0.002 1.899 1.377 0.569 0.752

0 0 1 1 0 0.003 0.381 0.612 0.338 0.576

1 0 1 1 0 0.002 0.172 0.411 0.059 0.235

0 1 1 1 0 0.003 3.331 1.824 1.068 1.031

1 1 1 1 0 3.207 4.696 0.687 1.431 −1.485

0 0 0 0 1 13.345 11.070 −0.684 12.340 −0.286

1 0 0 0 1 0.002 0.341 0.581 0.295 0.540

0 1 0 0 1 3.269 5.728 1.028 4.987 0.770

1 1 0 0 1 2.508 4.261 0.849 2.796 0.172

0 0 1 0 1 1.821 0.767 −1.203 0.717 −1.304

1 0 1 0 1 0.001 0.386 0.619 0.281 0.528

0 1 1 0 1 4.547 7.469 1.069 5.167 0.273

1 1 1 0 1 8.471 10.560 0.643 7.250 −0.454

0 0 0 1 1 0.001 0.380 0.614 0.064 0.247

1 0 0 1 1 0.044 0.055 0.045 0.092 0.157

0 1 0 1 1 2.680 1.039 −1.610 1.693 −0.759

1 1 0 1 1 1.130 1.369 0.205 2.437 0.837

0 0 1 1 1 0.003 0.101 0.308 0.168 0.402

1 0 1 1 1 0.001 0.123 0.347 0.242 0.490

0 1 1 1 1 8.135 2.387 −3.720 4.466 −1.736

1 1 1 1 1 3.867 3.428 −0.237 6.429 1.010

notably. In fact, this applies to all the tests: if no other test support the positive

result, the result is unlikely to be true positive.

6. Discussion

Latent class analysis has become a popular method in the evaluation of diagnos-

tic tests in the absence of gold standard. Though criticized by Alonzo and Pepe

(1999) and Pepe and Janes (2007) for being a ’black-box’ for clinicians, the sim-

plicity of a standard latent class model is attractive: the observed probabilities of
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the combinations of test results can be expressed in terms of the disease prevalence

and the sensitivities and the specificities of the diagnostic tests using basic rules of

probability.

Behind this simplicity lies, however, the rather strong assumption of local indepen-

dence. Though methods that relax this often unrealistic assumption are available,

it has been demonstrated that misspecified dependence structures may also lead

to biased estimates (Albert and Dodd, 2004). Thus, it may be more reasonable to

avoid too complex dependence structures and strive for a model in which the lo-

cal independence assumption holds by forming composite tests and excluding the

tests that are locally dependent with several other tests. If all dependency cannot

be eliminated, the joint item method is a simple way to take into account local

dependence between pairs of tests.

Local dependence is only one of the many issues in latent class analysis: unidentifi-

ability, local maximum solution and the effect of sparse data on model diagnostics

are all well recognized potential problems in LCA and need to be taken into account

in the modelling process. In the FinCAP Epi study, however, many complications

arose from missing data, a topic which is overlooked in the current literature con-

cerning latent class analysis. Especially model diagnostics for incomplete data has

received remarkably little attention, considering that missing data occur in almost

every study. This is certainly a field in latent class analysis that needs to be explored

in the future.

There has been a rather lively discussion between Garret and Zeger (2000, 2003)

and Formann (2003a) concerning frequentist and Bayesian approaches to latent

class analysis. In this thesis, a frequentist point of view was adopted. Equally well

Bayesian framework could have been chosen, but it is unlikely that this would have

changed the conclusions.

Estimating sensitivities and specificities using latent class analysis is only one part

of the case definition project. Using these results and other data collected in the

study along with substantive information, a group of experts will form the final case

definition of pneumococcal CAP.
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Appendix A. EM-algorithm

Likelihood function for complete data. Suppose, that the true disease status

of each subject is known. For each of the 2K different test result combinations,

observed is the number of diseased subjects fs and the number of non-diseased

subjects ns − fs, where ns is the observed frequency of the diseased and the non-

diseased subjects and s = 1, . . . , 2K.

Recall from Section 3.2

P (D = 1) = µ

P (X = as.|D = 0) =

K
∏

k=1

φXk

1−ask{1 − φXk
}ask

P (X = as.|D = 1) =
K
∏

k=1

(1 − ψXk
)1−ask{ψXk

}ask

Let θ denote the model parameters: θ = (µ,ψ,φ). Assuming local independence,

the log-likelihood function for complete data can now be expressed as

lc(θ) =
2K

∑

s=1

ns × log P (X = as.)

=

2K

∑

s=1

(ns − fs + fs) × log P (X = as.)

=

2K

∑

s=1

(ns − fs) × log P (X = as.) +

2K

∑

s=1

fs × log P (X = as.)

=
2K

∑

s=1

(ns − fs) × log P (X = as., D = 0) +
2K

∑

s=1

fs × log P (X = as., D = 1)

=

2K

∑

s=1

(ns − fs) × log {P (X = as.|D = 0) × P (D = 0)} +

2K

∑

s=1

fs × log {P (X = as.|D = 1) × P (D = 1)}
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=

2K

∑

s=1

(ns − fs) × log {

K
∏

k=1

(1 − φXk
)ask · φXk

1−ask × (1 − µ)} +

2K

∑

s=1

fs × log {
K
∏

k=1

ψXk

ask · (1 − ψXk
)1−ask × µ}

=

2K

∑

s=1

(ns − fs) × {

K
∑

k=1

log{(1 − φXk
)ask · φXk

1−ask} + log (1 − µ)} +

2K

∑

s=1

fs × {

K
∑

k=1

log{ψXk

ask · (1 − ψXk
)1−ask} + logµ}

The maximum likelihood estimates, that is the parameter values that maximize the

log-likelihood function, are found by differentiating the log-likelihood function with

respect to the unknown parameters µ,φXk
and ψXk

, where k = 1, . . .K and setting

the derivatives equal to zero.

The derivatives are

∂lc(θ)

∂µ
= −

∑2K

s=1 (ns − fs)

1 − µ
+

∑2K

s=1 fs

µ
(A.1)

∂lc(θ)

∂φXk

=

2K

∑

s=1

(ns − fs) × {
1 − ask

φk

−
ask

1 − φk

}(A.2)

∂lc(θ)

∂ψXk

=

2K

∑

s=1

fs × {
ask

ψk

−
1 − ask

1 − ψk

}(A.3)

Setting the equations A.1 - A.3 equal to zero yield the maximum likelihood esti-

mates:

µ̂ =

∑2K

s=1 fs
∑2K

s=1 fs +
∑2K

s=1(ns − fs)

=

∑2K

s=1 fs
∑2K

s=1 ns
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φ̂Xk
=

∑2K

s=1(ns − fs) × (1 − ask)
∑2K

s=1(ns − fs)

=

∑2K

s=1(ns − fs) × (1 − ask)

(1 − µ̂)
∑2K

s=1 ns

.

ψ̂Xk
=

∑2K

s=1 fs × ask
∑2K

s=1 fs

=

∑2K

s=1 fs × ask

µ̂×
∑2K

s=1 ns
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Appendix B. Tables

Table 12. Observed frequencies of different test result combinations

Sc Sp Np U 2Fi Observed

frequency

1 0 0 0 0 0 79

2 1 0 0 0 0 2

3 0 1 0 0 0 25

4 1 1 0 0 0 5

5 0 0 1 0 0 3

6 1 0 1 0 0 1

7 0 1 1 0 0 6

8 1 1 1 0 0 9

9 0 0 0 1 0 1

10 1 0 0 1 0 0

11 0 1 0 1 0 1

12 1 1 0 1 0 0

13 0 0 1 1 0 0

14 1 0 1 1 0 0

15 0 1 1 1 0 0

16 1 1 1 1 0 1

17 0 0 0 0 1 5

18 1 0 0 0 1 0

19 0 1 0 0 1 1

20 1 1 0 0 1 1

21 0 0 1 0 1 1

22 1 0 1 0 1 0

23 0 1 1 0 1 2

24 1 1 1 0 1 4

25 0 0 0 1 1 0

26 1 0 0 1 1 0

27 0 1 0 1 1 2

28 1 1 0 1 1 0

29 0 0 1 1 1 0

30 1 0 1 1 1 0

31 0 1 1 1 1 1

32 1 1 1 1 1 2
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Table 13. Estimated proportion of pneumococcal and non-
pneumococcal CAP cases for each test result combination

Test M5I M5D

ScSpNpU2Fi Pnc CAP not Pnc CAP Pnc CAP not Pnc CAP

0 0 0 0 0 0.001 0.999 0.001 0.999

1 0 0 0 0 0.061 0.939 0.085 0.915

0 1 0 0 0 0.080 0.920 0.097 0.903

1 1 0 0 0 0.877 0.123 0.908 0.092

0 0 1 0 0 0.041 0.959 0.058 0.942

1 0 1 0 0 0.780 0.220 0.851 0.149

0 1 1 0 0 0.825 0.175 0.868 0.132

1 1 1 0 0 0.997 0.003 0.998 0.002

0 0 0 1 0 0.008 0.992 0.002 0.998

1 0 0 1 0 0.401 0.599 0.157 0.843

0 1 0 1 0 0.471 0.529 0.177 0.823

1 1 0 1 0 0.987 0.013 0.952 0.048

0 0 1 1 0 0.306 0.694 0.111 0.889

1 0 1 1 0 0.973 0.027 0.920 0.080

0 1 1 1 0 0.980 0.020 0.929 0.071

1 1 1 1 0 1.000 0.000 0.999 0.001

0 0 0 0 1 0.009 0.991 0.006 0.994

1 0 0 0 1 0.441 0.559 0.350 0.650

0 1 0 0 1 0.511 0.489 0.383 0.617

1 1 0 0 1 0.989 0.011 0.983 0.017

0 0 1 0 1 0.342 0.658 0.265 0.735

1 0 1 0 1 0.977 0.023 0.971 0.029

0 1 1 0 1 0.983 0.017 0.974 0.026

1 1 1 0 1 1.000 0.000 1.000 0.000

0 0 0 1 1 0.089 0.911 1.000 0.000

1 0 0 1 1 0.890 0.110 1.000 0.000

0 1 0 1 1 0.915 0.085 1.000 0.000

1 1 0 1 1 0.999 0.001 1.000 0.000

0 0 1 1 1 0.842 0.158 1.000 0.000

1 0 1 1 1 0.998 0.002 1.000 0.000

0 1 1 1 1 0.998 0.002 1.000 0.000

1 1 1 1 1 1.000 0.000 1.000 0.000
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Appendix C. Functions

lca.function <- function(data,theta,fixed=c(rep(NA,(ncol(data)*2+1),1)),

const=0.0001,joint,em.niter=50,print.level=0,init.joint=F,...){

#################################################################################

## Estimates specificities, sensitivities and disease prevalence

## Arguments:

## data: data in the form of individual records;

## 0 for negative, 1 for positive and NA for missing

## theta: a vector consisting of starting values in following order:

## specificities, sensitivities and disease prevalence

## fixed: a vector of length theta consisting of fixed parameter values,

## NA for not fixed

## const: constand added to all cells to ensure convergence

## joint: a list consiting of (pairs of) tests to be replaced with joint test

## em.niter: number of iterations for EM-algorithm

## print: argument for function nlm: ’0’ means that no printing occurs,

## a value of ’1’ means the initial and final details are printed and

## a value of 2 mean that full tracing information is printed

## init.joint: logical: if false, no starting values given for joint tests

##################################################################################

require("Hmisc")

## Test result combinations

testcombsNA=function(samples){

ntest=ncol(samples)

al <- expand.grid(rep(list(c(0:2,NA)),ntest))

names(al) <- colnames(samples)

all <- apply(al,1,paste, collapse="")

y <- table(apply(samples,1,paste,collapse=""))

y <- y[match(all,names(y))]

y <- ifelse(is.na(y),0,y)

z=cbind(as.matrix(al),n=y)

z= z[which(z[,ntest+1]>0),]

row.names(z)=c(1:nrow(z))

return(z)

}

## EM-algorithm for complete data with local independence assumption

## Based on function lca in package e1071

emlca <- function(theta,freq,ntest,vec1,niter,full){

for(i in 1:niter){

## Specificity

spec <- theta[1:ntest]

## Sensitivity

sens <- theta[(ntest+1):(ntest+ntest)]

## Prevalence

pr <- theta[(ntest+ntest+1)]

se <- expand.grid(lapply(1:ntest,function(i)c(1-sens[i],sens[i])))

sp <- expand.grid(lapply(1:ntest,function(i)c(spec[i],1-spec[i])))
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pas2 <- rbind(exp(vec1%*%t(log(se)))*pr , exp(vec1%*%t(log(sp)))*(1-pr))

## Probabilities of the different test result combinations

testprop <- drop(rep(1, 2) %*% pas2)

## Class memebership probabilities given the observed test results

pas2 <- t(t(pas2)/testprop)

## Working frequencies

##(number of diseased and non-diseases in each test result combination)

workf <- t(t(pas2) * freq)

## Class size (number of diseased and non-diseased subjects)

classsize <- drop(workf %*% rep(1, length(freq)))

## Class probabilities (prevalence, 1-prevalence)

classprob <- classsize/sum(freq)

## Sensitivities and 1-specificities

p <- pas2 %*% as.matrix((freq * full))/classsize

theta <- c((1-p[2,]),(p[1,]), classprob[1])

}

return(theta)

}

## number of tests

ntest <- ncol(data)

## All complete and incomplete test result combinations

mat <- testcombsNA(data)[,1:ntest]

## Frequencies for all complete and incomplete test result combinations

freq <- testcombsNA(data)[,ntest+1]

## Complete cases

obs <- mat[apply(mat,1,function(i) {!any(is.na(i))}),]

## Partially missing cases

miss <- matrix(mat[apply(mat,1,function(i) {any(is.na(i))}),],ncol=ntest)

## frequences, observed and missing

names(freq) <- apply(mat,1,paste,collapse="")

freq <- freq[match(apply(rbind(obs,miss),1,paste,collapse=""),names(freq))]

## All test result combinations

full <- expand.grid(rep(list(0:1),ntest))

b <- apply(full,1,paste,collapse="")

## Indexes for complete cases

indexobs <- (as.numeric(row.names(full))[match(apply(obs,1,paste,collapse=""),

apply(full,1,paste,collapse=""))])

## Incomplete data

if(length(miss)!=0){

## Indexes for partially missing test combinations

miss2 <- lapply(1:nrow(miss),function(a) {

nas <- which(is.na(miss[a,]))

a <- matrix(miss[a,], nrow=2^length(nas), ncol=length(miss[a,]), byrow=T)

b <- as.matrix(expand.grid(rep(list(0:1),length(nas))))

a[,nas] <- b

return(a)

})

indexmiss <- lapply(miss2, function(i) {

a <- apply(i,1,paste,collapse="")
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as.numeric(row.names(full))[match(a,apply(full,1,paste,collapse=""))]})

## All indexes

index <- list(indexobs,indexmiss)

## Frequencies for all testcombinations, const added to all cells

freqall <- c(rep(0, 2^(ntest)),freq[(length(indexobs)+1):length(freq)])

freqall[indexobs] <- freq[1:length(indexobs)]

freqall <- freqall+ const

}

## Complete data

else{

freqall <- c(rep(0, 2^(ntest)))

freqall[indexobs] <- freq[1:length(indexobs)]

freqall <- freqall+ const

index <- indexobs

}

vec1 <- rep(1,ntest)

## All possible combinations of ntest test

full <- expand.grid(rep(list(0:1),ntest))

## Starting values using EM-algorithm

if(em.niter>0){

emtheta <- round(emlca(theta=theta,freq=(freqall[1:2^ntest]-const),ntest=ntest,

vec1=vec1,niter=em.niter,full=full),4)

theta <- emtheta

}

## Fixed values

theta[!is.na(fixed)] <- fixed[!is.na(fixed)]

## Local independece model

if (missing(joint)){

## Log-likelihood for complete cases

loglikind.comp <- function(theta,index,freq,ntest,vec1,fixed){

theta[!is.na(fixed)] <- fixed[!is.na(fixed)]

sens <- theta[(ntest+1):(ntest+ntest)]

pr <- theta[(ntest+ntest+1)]

spec <- theta[1:ntest]

se <- expand.grid(lapply(1:ntest,function(i)c(1-sens[i],sens[i])))

sp <- expand.grid(lapply(1:ntest,function(i)c(spec[i],1-spec[i])))

pi <- exp(vec1%*%t(log(se)))*pr + exp(vec1%*%t(log(sp)))*(1-pr)

## Log-likelihood

out <- -sum(freq[1:(2^ntest)]*log((pi)))

if(any(is.na(c(out,range(se,sp)))) || out==Inf || max(unlist(se))>1 ||

min(unlist(se))<0 || max(unlist(sp))>1 || min(unlist(sp))<0 || pr<0 || pr>1){

.Machine$double.xmax}

else {out}

}

## Log-likelihood for incomplete data with local independence assumption

loglikind <- function(theta,index,freq,ntest,vec1,fixed){

theta[!is.na(fixed)] <- fixed[!is.na(fixed)]

sens <- theta[(ntest+1):(ntest+ntest)]
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pr <- theta[(ntest+ntest+1)]

spec <- theta[1:ntest]

se <- expand.grid(lapply(1:ntest,function(i)c(1-sens[i],sens[i])))

sp <- expand.grid(lapply(1:ntest,function(i)c(spec[i],1-spec[i])))

pi <- exp(vec1%*%t(log(se)))*pr + exp(vec1%*%t(log(sp)))*(1-pr)

## Log-likelihood for complete cases

out1 <- sum(freq[1:(2^ntest)]*log((pi)))

## Log-likelihood for partially missing cases

out2 <- sum(freq[(2^ntest+1):length(freq)]*

sapply(index[[2]],function(i)log(sum(pi[i]))))

out <- (-out1-out2)

if(any(is.na(c(out,range(se,sp)))) || out==Inf || max(unlist(se))>1 ||

min(unlist(se))<0 || max(unlist(sp))>1 || min(unlist(sp))<0 || pr<0 || pr>1){

.Machine$double.xmax}

else {out}

}

## Complete data

if(length(miss)==0){

out <- nlm(loglikind.comp,p=theta,index=index,freq=freqall,ntest=ncol(mat),vec1=vec1,

fixed=fixed,hessian=T,iterlim=500,print.level=print.level,...)

}

## Incomplete data

else {

out <- nlm(loglikind,p=theta,index=index,freq=freqall,ntest=ncol(mat),vec1=vec1,

fixed=fixed,hessian=T,iterlim=500,print.level=print.level,...)

}

## Standard errors

std <- vector(length =length(theta))

std[!is.na(fixed)] <- 0 # if fixed, then 0

std[is.na(fixed)] <- sqrt(diag(solve(out$hessian[is.na(fixed),is.na(fixed)])))

out$std2 <- std

names(out$std) <- c(paste("SPEC",colnames(mat),sep=""),

paste("SENS",colnames(mat),sep=""),"PREV")

names(out$estimate) <- c(paste("SPEC",colnames(mat),sep=""),

paste("SENS",colnames(mat),sep=""),"PREV")

out$est <- out$estimate

out$std <- c(std[(2*ntest+1)],std[(ntest+1):(2*ntest)],std[1:ntest])

out$est <- c(out$est[(2*ntest+1)],out$est[(ntest+1):(2*ntest)],out$est[1:ntest])

out$call <- match.call()

}

## Local dependence, direct effects between tests

else{

fixed <- fixed[1:(2*ntest+1)]

## Loglikelihood function for omplete data

loglik.comp <- function(theta,index,freq,ntest,vec1,fixed,joint,jointp){

theta[!is.na(fixed)] <- fixed[!is.na(fixed)]

spec <- theta[1:ntest]

sens <- theta[(ntest+1):(ntest+ntest)]

pr <- theta[(ntest+ntest+1)]
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joint0 <- matrix(theta[(2*ntest+2):(2*ntest+2+3*length(joint)-1)],

nrow=length(joint),byrow=T)

joint1 <- matrix(theta[(2*ntest+2+3*length(joint)):length(theta)],

nrow=length(joint),byrow=T)

joinm0 <- cbind(joint0,apply(joint0,1,function(i) 1-sum(i)))

joinm1 <- cbind(apply(joint1,1,function(i) 1-sum(i)),joint1)

s0 <- lapply(1:length(joint),function(i) cbind(rep(1,2^ntest),

joinm0[i,][jointp[[i]]]))

s1 <- lapply(1:length(joint),function(i) cbind(rep(1,2^ntest),

joinm1[i,][jointp[[i]]]))

se <- expand.grid(lapply(1:ntest,function(i)c(1-sens[i],sens[i])))

sp <- expand.grid(lapply(1:ntest,function(i)c(spec[i],1-spec[i])))

se[,unlist(joint)] <- do.call("cbind",s1)

sp[,unlist(joint)] <- do.call("cbind",s0)

pi <- exp(vec1%*%t(log(se)))*pr + exp(vec1%*%t(log(sp)))*(1-pr)

## Log-likelihood for complete cases

out <- -sum(freq[1:(2^ntest)]*log((pi)))

if(any(is.na(c(out,range(se,sp)))) || out==Inf || max(unlist(se))>1 ||

min(unlist(se))<0 || max(unlist(sp))>1 || min(unlist(sp))<0 || pr<0 || pr>1){

.Machine$double.xmax}

else {out}

}

## Loglikelihood function for incomplete data

loglik <- function(theta,index,freq,ntest,vec1,fixed,joint,jointp){

theta[!is.na(fixed)] <- fixed[!is.na(fixed)]

spec <- theta[1:ntest]

sens <- theta[(ntest+1):(ntest+ntest)]

pr <- theta[(ntest+ntest+1)]

joint0 <- matrix(theta[(2*ntest+2):(2*ntest+2+3*length(joint)-1)],

nrow=length(joint),byrow=T)

joint1 <- matrix(theta[(2*ntest+2+3*length(joint)):length(theta)],

nrow=length(joint),byrow=T)

joinm0 <- cbind(joint0,apply(joint0,1,function(i) 1-sum(i)))

joinm1 <- cbind(apply(joint1,1,function(i) 1-sum(i)),joint1)

s0 <- lapply(1:length(joint),function(i) cbind(rep(1,2^ntest),

joinm0[i,][jointp[[i]]]))

s1 <- lapply(1:length(joint),function(i) cbind(rep(1,2^ntest),

joinm1[i,][jointp[[i]]]))

se <- expand.grid(lapply(1:ntest,function(i)c(1-sens[i],sens[i])))

sp <- expand.grid(lapply(1:ntest,function(i)c(spec[i],1-spec[i])))

se[,unlist(joint)] <- do.call("cbind",s1)

sp[,unlist(joint)] <- do.call("cbind",s0)

pi <- exp(vec1%*%t(log(se)))*pr + exp(vec1%*%t(log(sp)))*(1-pr)

## Log-likelihood for complete cases

out1 <- sum(freq[1:(2^ntest)]*log((pi)))

## Log-likelihood for partially missing cases

out2 <- sum(freq[(2^ntest+1):length(freq)]*sapply(index[[2]],function(i)

log(sum(pi[i]))))
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out <- (-out1-out2)

if(any(is.na(c(out,range(se,sp)))) || out==Inf || max(unlist(se))>1

|| min(unlist(se))<0

|| max(unlist(sp))>1 || min(unlist(sp))<0 || pr<0 || pr>1){

.Machine$double.xmax}

else {out}

}

## Joint item

spec <- theta[1:ncol(mat)]

sens <- theta[(ncol(mat)+1):(2*ncol(mat))]

sensj <- sapply(joint,function(i) sens[i])

a <- lapply(1:length(joint),function(j)

expand.grid(lapply(1:2,function(i)

c(1-sensj[i,j],sensj[i,j]))))

## Starting values, assuming local independence

sej <- lapply(1:length(joint),function(i)

{out <- apply(a[[i]],1,prod)

names(out) <- c("00","10","01","11")

return(out[2:4])})

specj <- sapply(joint,function(i) spec[i])

b <- lapply(1:length(joint),function(j)

expand.grid(lapply(1:2,function(i)

c(specj[i,j],(1-specj[i,j])))))

spj <- lapply(1:length(joint),function(i)

{ out <- apply(b[[i]],1,prod)

names(out) <- c("00","10","01","11")

return(out[1:3])})

jointp <- lapply(1:length(joint),function(i)

match(apply(full[,joint[[i]]],1,paste,collapse=""),

c("00","10","01","11")))

if(!init.joint)

theta <- c(theta,unlist(spj),unlist(sej))

## Fixed values

fixed <- c(fixed,rep(NA,2*3*length(joint)))

vec1 <- rep(1,ncol(mat))

theta[!is.na(fixed)] <- fixed[!is.na(fixed)]

## Compete data

if(length(miss)==0){

out <- nlm(loglik.comp,p=theta,index=index,freq=freqall,ntest=ncol(mat),vec1=vec1,

fixed=fixed,joint=joint,jointp=jointp,hessian=T,

iterlim=500,print.level=print.level,...)

}

## Incomplete data

else{

out <- nlm(loglik,p=theta,index=index,freq=freqall,ntest=ncol(mat),vec1=vec1,
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fixed=fixed,joint=joint,jointp=jointp,hessian=T,

iterlim=500,print.level=print.level,...)

}

vecorg <- diag(rep(1,(2*ntest+1)))

vecorg[,c(unlist(joint),(ntest+ unlist(joint)))] <- rep(0,(2*ntest+1))

vecj <- matrix(rep(0,(2*ntest+1)*(6*length(joint))),ncol=(2*ntest+1))

b <- matrix(rep(0,24*length(joint)^2), nrow=6*length(joint))

apu=0

for(i in 1:length(joint)){

b[(apu+i):(apu+i+2),(apu/2+i):(apu/2+i+1)] <- cbind(c(1,0,1),c(1,1,0))

apu=apu+2

}

## Sens

apu2=3*length(joint)

for(i in 1:length(joint)){

b[(apu2+i):(apu2+i+2),(apu2/2+i+1):(apu2/2+i+2)] <- cbind(c(1,0,1),c(0,1,1))

apu2=apu2+2

}

vecj[,c(unlist(joint),(ntest+unlist(joint)))] <- b

est <- out$estimate%*%rbind(vecorg,vecj)

out$est <- as.vector(est)

names(out$est) <- c(paste("SPEC",colnames(mat),sep=""),

paste("SENS",colnames(mat),sep=""),"Prevalence")

## Standard errors

jp <- c(unlist(joint),(ncol(mat)+unlist(joint)))

fixed2 <- fixed

fixed2[jp] <- 1

s <- matrix(rep(0,36*length(joint)^2), nrow=6*length(joint))

apu=0

for(i in 1:length(joint)){

s[(apu+i):(apu+i+2),(apu+i):(apu+i+2)] <- cbind(c(1,0,1),c(1,1,0),c(0,0,0))

apu=apu+2

}

## Sens

apu2=3*length(joint)

for(i in 1:length(joint)){

s[(apu2+i):(apu2+i+2),(apu2+i):(apu2+i+2)] <- cbind(c(1,0,1),c(0,1,1),c(0,0,0))

apu2=apu2+2

}

stdvec <- diag(rep(1,(2*ntest+1-length(fixed[!is.na(fixed)])+2*length(joint))))

stdvec[(2*ntest+1-length(fixed[!is.na(fixed)])-4*length(joint)+1):nrow(stdvec),

(2*ntest+1-length(fixed[!is.na(fixed)])-4*length(joint)+1):nrow(stdvec)] <- s

covar <- solve(out$hessian[is.na(fixed2),is.na(fixed2)])

stdall <- sqrt(diag(covar))

std <- sqrt(diag(t(stdvec)%*%covar%*%stdvec))
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std <- std[std>0]

std2 <- rep(0,2*ntest+1+6*length(joint))

std2[is.na(fixed2)] <- stdall

names(std2) <- c(paste("SPEC",colnames(mat),sep=""),

paste("SENS",colnames(mat),sep=""),

"Prevalence",rep(paste(names(spj[[1]]),"|0",sep=""),length(joint)),

rep(paste(names(sej[[1]]),"|1",sep=""),length(joint)))

std2[c(unlist(joint),unlist(joint)+ntest)] <- std[(2*ntest+1-length(fixed[!is.na(fixed)])

-4*length(joint)+1):length(std)]

out$std <- c(std2[(2*ntest+1)],std2[(ntest+1):(2*ntest)],std2[1:ntest])

out$est <- c(out$est[(2*ntest+1)],out$est[(ntest+1):(2*ntest)],out$est[1:ntest])

out$std2 <- std2

out$call <- match.call()

}

class(out) <- "LCA"

return(out)

print.LCA <- function (x, ...)

{

cat("Call:\n")

print(x$call)

cat("\nLog-likelihood\n")

cat(-x$minimum,digits=6)

cat("\nEstimates and standard errors\n")

ests <- cbind(names(x$est),round(x$est,3),round(x$std,3))

colnames(ests) <- c("Parameter","Estimate","Standard Error")

print.char.matrix(ests,col.names=T,row.names=F)

if (x$code ==2 & sum(abs(x$gradient))>1){

cat(paste("WARNING: Convergence code",

x$code, ";See ?nlm for details\n In addition sum of gradient > 1 \n"))

}

else if (x$code > 1)

cat(paste("WARNING: Convergence code", x$code,

"; See ?nlm for details\n"))

}

}
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